15 research outputs found

    Photosynthetic cytochrome c550

    Get PDF
    Cytochrome c550 (cyt c550) is a membrane component of the PSII complex in cyanobacteria and some eukaryotic algae, such as red and brown algae. Cyt c550 presents a bis-histidine heme coordination which is very unusual for monoheme c-type cytochromes. In PSII, the cyt c550 with the other extrinsic proteins stabilizes the binding of Cl− and Ca2 + ions to the oxygen evolving complex and protects the Mn4Ca cluster from attack by bulk reductants. The role (if there is one) of the heme of the cyt c550 is unknown. The low midpoint redox potential (Em) of the purified soluble form (from − 250 to − 314 mV) is incompatible with a redox function in PSII. However, more positive values for the Em have been obtained for the cyt c550 bound to the PSII. A very recent work has shown an Em value of + 200 mV. These data open the possibility of a redox function for this protein in electron transfer in PSII. Despite the long distance (22 Å) between cyt c550 and the nearest redox cofactor (Mn4Ca cluster), an electron transfer reaction between these components is possible. Some kind of protective cycle involving a soluble redox component in the lumen has also been proposed. The aim of this article is to review previous studies done on cyt c550 and to consider its function in the light of the new results obtained in recent years. The emphasis is on the physical properties of the heme and its redox properties. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.Ministerio de Ciencia e Innovación BFU2007-68107-C02-01Junta de Andalucía PADI CVI-26

    Cytochrome c550 in the cyanobacterium Thermosynechococcus elongatus: Study of redox mutants

    Get PDF
    Cytochrome c550 is one of the extrinsic Photosystem II subunits in cyanobacteria and red algae. To study the possible role of the heme of the cytochrome c550 we constructed two mutants of Thermosynechococcus elongatus in which the residue His-92, the sixth ligand of the heme, was replaced by a Met or a Cys in order to modify the redox properties of the heme. The H92M and H92C mutations changed the midpoint redox potential of the heme in the isolated cytochrome by +125 mV and –30 mV, respectively, compared with the wild type. The binding-induced increase of the redox potential observed in the wild type and the H92C mutant was absent in the H92M mutant. Both modified cytochromes were more easily detachable from the Photosystem II compared with the wild type. The Photosystem II activity in cells was not modified by the mutations suggesting that the redox potential of the cytochrome c550 is not important for Photosystem II activity under normal growth conditions. A mutant lacking the cytochrome c550 was also constructed. It showed a lowered affinity for Cl– and Ca2+ as reported earlier for the cytochrome c550-less Synechocystis 6803 mutant, but it showed a shorter lived Formula state, rather than a stabilized S2 state and rapid deactivation of the enzyme in the dark, which were characteristic of the Synechocystis mutant. It is suggested that the latter effects may be caused by loss (or weaker binding) of the other extrinsic proteins rather than a direct effect of the absence of the cytochrome c55

    Specificity of the Cyanobacterial Orange Carotenoid Protein: Influences of Orange Carotenoid Protein and Phycobilisome Structures

    No full text
    Cyanobacteria have developed a photoprotective mechanism that decreases the energy arriving at the reaction centers by increasing thermal energy dissipation at the level of the phycobilisome (PB), the extramembranous light-harvesting antenna. This mechanism is triggered by the photoactive Orange Carotenoid Protein (OCP), which acts both as the photosensor and the energy quencher. The OCP binds the core of the PB. The structure of this core differs in diverse cyanobacterial strains. Here, using two isolated OCPs and four classes of PBs, we demonstrated that differences exist between OCPs related to PB binding, photoactivity, and carotenoid binding. Synechocystis PCC 6803 (hereafter Synechocystis) OCP, but not Arthrospira platensis PCC 7345 (hereafter Arthrospira) OCP, can attach echinenone in addition to hydroxyechinenone. Arthrospira OCP binds more strongly than Synechocystis OCP to all types of PBs. Synechocystis OCP can strongly bind only its own PB in 0.8 M potassium phosphate. However, if the Synechocystis OCP binds to the PB at very high phosphate concentrations (approximately 1.4 M), it is able to quench the fluorescence of any type of PB, even those isolated from strains that lack the OCP-mediated photoprotective mechanism. Thus, the determining step for the induction of photoprotection is the binding of the OCP to PBs. Our results also indicated that the structure of PBs, at least in vitro, significantly influences OCP binding and the stabilization of OCP-PB complexes. Finally, the fact that the OCP induced large fluorescence quenching even in the two-cylinder core of Synechococcus elongatus PBs strongly suggested that OCP binds to one of the basal allophycocyanin cylinders

    Switching an Individual Phycobilisome Off and On

    Get PDF
    Photosynthetic organisms have found various smart ways to cope with unexpected changes in light conditions. In many cyanobacteria, the lethal effects of a sudden increase in light intensity are mitigated mainly by the interaction between phycobilisomes (PBs) and the orange carotenoid protein (OCP). The latter senses high light intensities by means of photoactivation and triggers thermal energy dissipation from the PBs. Due to the brightness of their emission, PBs can be characterized at the level of individual complexes. Here, energy dissipation from individual PBs was reversibly switched on and off using only light and OCP. We reveal the presence of quasistable intermediate states during the binding and unbinding of OCP to PB, with a spectroscopic signature indicative of transient decoupling of some of the PB rods during docking of OCP. Real-time control of emission from individual PBs has the potential to contribute to the development of new super-resolution imaging techniques
    corecore