18 research outputs found

    Long-Term Operational Stability of Ta/Pt Thin-Film Microheaters: Impact of the Ta Adhesion Layer

    No full text
    Microheaters with long-term stability are crucial for the development of a variety of microelectronic devices operated at high temperatures. Structured Ta/Pt bilayers, in which the Ta sublayer ensures high adhesion of the Pt resistive layer, are widely used to create microheaters. Herein, a comprehensive study of the microstructure of Ta/Pt films using high-resolution transmission electron microscopy with local elemental analysis reveals the twofold nature of Ta after annealing. The main fraction of Ta persists in the form of tantalum oxide between the Pt resistive layer and the alumina substrate. Such a sublayer hampers Pt recrystallization and grain growth in bilayered Ta/Pt films in comparison with pure Pt films. Tantalum is also observed inside the Pt grains as individual Ta nanoparticles, but their volume fraction is only about 2%. Microheaters based on the 10 nm Ta/90 nm Pt bilayers after pre-annealing exhibit long-term stability with low resistance drift at 500 °C (less than 3%/month)

    One-Dimensional Photonic Crystals with Nonbranched Pores Prepared via Phosphorous Acid Anodizing of Aluminium

    No full text
    One-dimensional photonic crystals (1D PhCs) obtained by aluminium anodizing under oscillating conditions are promising materials with structure-dependent optical properties. Electrolytes based on sulphuric, oxalic, and selenic acids have been utilized for the preparation of anodic aluminium oxide (AAO) 1D PhCs with sub-100-nm pore diameter. AAO films with larger pores can be obtained by anodizing in phosphorous acid at high voltages. Here, for the first time, anodizing in phosphorous acid is applied for the preparation of AAO 1D PhCs with nonbranched macropores. The sine wave profile of anodizing voltage in the 135–165 V range produces straight pores, whose diameter is above 100 nm and alternates periodically in size. The pore diameter modulation period linearly increases with the charge density by a factor of 599 ± 15 nm·cm2·C−1. The position of the photonic band gap is controlled precisely in the 0.63–1.96 µm range, and the effective refractive index of AAO 1D PhCs is 1.58 ± 0.05

    Titania Photonic Crystals with Precise Photonic Band Gap Position via Anodizing with Voltage versus Optical Path Length Modulation

    No full text
    Photonic crystals based on titanium oxide are promising for optoelectronic applications, for example as components of solar cells and photodetectors. These materials attract great research attention because of the high refractive index of TiO2. One of the promising routes to prepare photonic crystals based on titanium oxide is titanium anodizing at periodically changing voltage or current. However, precise control of the photonic band gap position in anodic titania films is a challenge. To solve this problem, systematic data on the effective refractive index of the porous anodic titanium oxide are required. In this research, we determine quantitatively the dependence of the effective refractive index of porous anodic titanium oxide on the anodizing regime and develop a model which allows one to predict and, therefore, control photonic band gap position in the visible spectrum range with an accuracy better than 98.5%. The prospects of anodic titania photonic crystals implementation as refractive index sensors are demonstrated

    Crystallography-Induced Correlations in Pore Ordering of Anodic Alumina Films

    No full text
    A crystallographic approach to tailoring the morphology and ordering degree of the porous structure of alumina films obtained by anodization of single-crystalline aluminum is discussed. The examination of porous structure of anodic alumina films formed on low-index and vicinal planes of Al single crystals under self-ordering conditions by high-resolution small-angle X-ray scattering revealed the existence of two pore growth directions on vicinal facets. The inclination of channels from the normal to the metal surface is explained by the competitive impact of electromigration driving force and the crystallographic anisotropy of the substrate. It was also shown that pores growing in different directions during anodization retain hexagonal domains with various in-plane orientations. These results for the first time demonstrate the strong correlations between the longitudinal alignment and in-plane packing options of pores in anodic alumina films

    Oriented arrays of iron nanowires: synthesis, structural and magnetic aspects

    No full text
    Iron nanowires with the diameter of ca. 40 nm and a length up to few dozens of microns are fabricated via templated electrodeposition using anodic aluminum oxide (AAO) film as porous matrix. Despite polycrystalline structure of wires the technique allows fabrication of dense deposits with micrometer-sized single crystalline grains within AAO templates and high chemical stability towards oxidation. Nanowire arrays exhibit strong magnetization anisotropy with saturation magnetization of 180 emu/g and coercive field of 815 Oe in direction parallel to the long axis of nanowires and 230 Oe in perpendicular direction. The effective hyperfine fields on iron atoms as extracted from Mossbauer and Nuclear Forward Scattering of sample in demagnetized state indicates slight deviation of magnetization vector (~ 6°) from nanowire long axis appearing probably due to curling of magnetic moments by antisymmetric exchange interactions at the surface of nanowires

    Towards High-Temperature MEMS: Two-Step Annealing Suppressed Recrystallization in Thin Multilayer Pt-Rh/Zr Films

    No full text
    Platinum-based thin films are widely used to create microelectronic devices operating at temperatures above 500 °C. One of the most effective ways to increase the high-temperature stability of platinum-based films involves incorporating refractory metal oxides (e.g., ZrO2, HfO2). In such structures, refractory oxide is located along the metal grain boundaries and hinders the mobility of Pt atoms. However, the effect of annealing conditions on the morphology and functional properties of such multiphase systems is rarely studied. Here, we show that the two-step annealing of 250-nm-thick Pt-Rh/Zr multilayer films instead of the widely used isothermal annealing leads to a more uniform film morphology without voids and hillocks. The composition and morphology of as-deposited and annealed films were investigated using X-ray diffraction and scanning electron microscopy, combined with energy-dispersive X-ray spectroscopy. At the first annealing step at 450 °C, zirconium oxidation was observed. The second high-temperature annealing at 800–1000 °C resulted in the recrystallization of the Pt-Rh alloy. In comparison to the one-step annealing of Pt-Rh and Pt-Rh/Zr films, after two-step annealing, the metal phase in the Pt-Rh/Zr films has a smaller grain size and a less pronounced texture in the direction, manifesting enhanced high-temperature stability. After two-step annealing at 450/900 °C, the Pt-Rh/Zr thin film possessed a grain size of 60 ± 27 nm and a resistivity of 17 × 10−6 Ω·m. The proposed annealing protocol can be used to create thin-film MEMS devices for operation at elevated temperatures, e.g., microheater-based gas sensors

    High-resolution SAXS setup with tuneable resolution in direct and reciprocal space : A new tool to study ordered nanostructures

    No full text
    A novel compact small-angle X-ray scattering (SAXS) setup with tuneable resolution in both direct and reciprocal space has been designed and tested for the study of nanostructured materials with a hierarchical structure. The setup exploits a set of compound refractive lenses that focus the X-ray beam at the detector position. Anodic alumina membranes with a self-ordered porous structure were chosen as test samples. The setup allows patterns to be collected with a minimum scattering vector value of 0.001 14;nm-1 and gives the possibility for an easy continuous switch between taking high-resolution statistically averaged diffraction data of macroscopically large sample volumes and lower-resolution diffraction on a small single domain of the anodic aluminium oxide film. It is revealed that the pores are longitudinal and their ordering within each domain tends towards the ideal hexagonal structure, whereas the in-plane orientation of the pore arrays changes from domain to domain. The possible advantages and disadvantages of the proposed compact SAXS scheme are discussed

    Size-Dependent Superconducting Properties of In Nanowire Arrays

    No full text
    Arrays of superconducting nanowires may be useful as elements of novel nanoelectronic devices. The superconducting properties of nanowires differ significantly from the properties of bulk structures. For instance, different vortex configurations of the magnetic field have previously been predicted for nanowires with different diameters. In the present study, arrays of parallel superconducting In nanowires with the diameters of 45 nm, 200 nm, and 550 nm—the same order of magnitude as coherence length ξ—were fabricated by templated electrodeposition. Values of magnetic moment M of the samples were measured as a function of magnetic field H and temperature T in axial and transverse fields. M(H) curves for the arrays of nanowires with 45 nm and 200 nm diameters are reversible, whereas magnetization curves for the array of nanowires with 550 nm diameter have several feature points and show a significant difference between increasing and decreasing field branches. Critical fields increase with a decrease in diameter, and the thinnest nanowires exceed bulk critical fields by 20 times. The qualitative change indicates that magnetic field configurations are different in the nanowires with different diameters. Variation of M(H) slope in small fields, heat capacity, and the magnetic field penetration depth with the temperature were measured. Superconductivity in In nanowires is proven to exist above the bulk critical temperature

    Growth of porous anodic alumina on low-index surfaces of Al single crystals

    No full text
    The pseudoepitaxial growth of amorphous anodic alumina with ordered porous structure within single crystal grains of aluminum substrates is an amazing feature of the self-organization process, which occurs during anodization. Here, we used single crystal Al(100), Al(110), and Al(111) substrates to inspect the effect of aluminum crystallography on anodization rates and the morphology of the resulting alumina films grown under different anodization conditions. The difference in the kinetics of porous film growth on various substrates is described in terms of the activation barrier of aluminum atom release from the metal surface to the oxide layer. Scanning electron microscopy and small-angle X-ray scattering are applied for quantitative characterization of different kinds of ordering in anodic alumina films. The highest number of straight channels was found in porous anodic alumina grown on Al(100) substrates, whereas Al(111) was proved to induce the best orientational order in anodic alumina with the formation of the single-domain-like structures. Based on the obtained results, possible pathways for crystallographic control of the anodic alumina porous structure for different practical applications are discussed
    corecore