46 research outputs found
Ultrafast interatomic electronic decay in multiply excited clusters
An ultrafast mechanism belonging to the family of interatomic Coulombic decay
(ICD) phenomena is proposed. When two excited species are present, an ultrafast
energy transfer can take place bringing one of them to its ground state and
ionizing the other one. It is shown that if large homoatomic clusters are
exposed to an ultrashort and intense laser pulse whose photon energy is in
resonance with an excitation transition of the cluster constituents, the large
majority of ions will be produced by this ICD mechanism rather than by
two-photon ionization. A related collective-ICD process that is operative in
heteroatomic systems is also discussed.Comment: 4 pages, 3 figure
Time-resolved Pump-Probe Spectroscopy to Follow Valence Electron Motion
After an initial few-cycle UV pump pulse, the time-dependent spatial locations of holes and particles produced in the valence level can be probed by exciting core electrons
Recommended from our members
Interatomic Coulombic electron capture from first principles
Interatomic Coulombic electron capture (ICEC) is an environment-assisted process in which a free electron can efficiently attach to an ion, atom or molecule by transferring the excess energy to a neighboring species. Absolute cross sections are necessary to evaluate the relative importance of this process. In this work, we employ the R-matrix method to compute ab initio these cross sections for a singly charged neon ion embedded in small helium clusters. Our results show that the ICEC cross sections are several orders of magnitude higher than anticipated and dominate other competing processes. Electron energy loss spectra on an absolute scale are provided for the Ne+@He20 cluster. Such spectra exhibit an unambiguous signature of the ICEC process. The finding is expected to stimulate experimental observations
Environment assisted electron capture
Electron capture by {\it isolated} atoms and ions proceeds by
photorecombination. In this process a species captures a free electron by
emitting a photon which carries away the excess energy. It is shown here that
in the presence of an {\it environment} a competing non-radiative electron
capture process can take place due to long range electron correlation. In this
interatomic (intermolecular) process the excess energy is transferred to
neighboring species. The asymptotic expression for the cross section of this
process is derived. We demonstrate by explicit examples that under realizable
conditions the cross section of this interatomic process can clearly dominate
that of photorecombination
Attosecond spectroscopy reveals alignment dependent core-hole dynamics in the ICl molecule.
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4d-16p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl
Recommended from our members
Intracluster Coulombic decay following intense NIR ionization of clusters
We report on the observation of a novel intracluster Coulombic decay process following Rydberg atom formation in clusters ionized by intense near-infrared fields. A new decay channel emerges, in which a Rydberg atom relaxes to the ground state by transferring its excess energy to a weakly bound electron in the environment that is emitted from the cluster. We find evidence for this process in the electron spectra, where a peak close to the corresponding atomic ionization potential is observed. For Ar clusters, a decay time of 87 ps is measured, which is significantly longer than in previous time-resolved studies of interatomic Coulombic decay
Attosecond spectroscopy reveals alignment dependent core-hole dynamics in the ICl molecule
The removal of electrons located in the core shells of molecules creates transient states that live between a few femtoseconds to attoseconds. Owing to these short lifetimes, time-resolved studies of these states are challenging and complex molecular dynamics driven solely by electronic correlation are difficult to observe. Here, we obtain few-femtosecond core-excited state lifetimes of iodine monochloride by using attosecond transient absorption on iodine 4 d −1 6 p transitions around 55 eV. Core-level ligand field splitting allows direct access of excited states aligned along and perpendicular to the ICl molecular axis. Lifetimes of 3.5 ± 0.4 fs and 4.3 ± 0.4 fs are obtained for core-hole states parallel to the bond and 6.5 ± 0.6 fs and 6.9 ± 0.6 fs for perpendicular states, while nuclear motion is essentially frozen on this timescale. Theory shows that the dramatic decrease of lifetime for core-vacancies parallel to the covalent bond is a manifestation of non-local interactions with the neighboring Cl atom of ICl