12 research outputs found

    Ecological and conceptual consequences of Arctic pollution

    Get PDF
    This is the final version. Available on open access from Wiley via the DOI in this recordAlthough the effect of pollution on forest health and decline received much attention in the 1980s, it has not been considered to explain the ‘Divergence Problem’ in dendroclimatology; a decoupling of tree growth from rising air temperatures since the 1970s. Here we use physical and biogeochemical measurements of hundreds of living and dead conifers to reconstruct the impact of heavy industrialisation around Norilsk in northern Siberia. Moreover, we develop a forward model with surface irradiance forcing to quantify long‐distance effects of anthropogenic emissions on the functioning and productivity of Siberia’s taiga. Downwind from the world’s most polluted Arctic region, tree mortality rates of up to 100% have destroyed 24,000 km2 boreal forest since the 1960s, coincident with dramatic increases in atmospheric sulphur, copper, and nickel concentrations. In addition to regional ecosystem devastation, we demonstrate how ‘Arctic Dimming’ can explain the circumpolar ‘Divergence Problem’, and discuss implications on the terrestrial carbon cycle.Forest ServiceMinistry of Science and Higher EducationRussian Science Foundatio

    Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD

    Get PDF
    Climatic changes during the first half of the Common Era have been suggested to play a role in societal reorganizations in Europe and Asia. In particular, the sixth century coincides with rising and falling civilizations, pandemics, human migration and political turmoil. Our understanding of the magnitude and spatial extent as well as the possible causes and concurrences of climate change during this period is, however, still limited. Here we use tree-ring chronologies from the Russian Altai and European Alps to reconstruct summer temperatures over the past two millennia. We find an unprecedented, long-lasting and spatially synchronized cooling following a cluster of large volcanic eruptions in 536, 540 and 547 AD (ref.), which was probably sustained by ocean and sea-ice feedbacks, as well as a solar minimum. We thus identify the interval from 536 to about 660 AD as the Late Antique Little Ice Age. Spanning most of the Northern Hemisphere, we suggest that this cold phase be considered as an additional environmental factor contributing to the establishment of the Justinian plague, transformation of the eastern Roman Empire and collapse of the Sasanian Empire, movements out of the Asian steppe and Arabian Peninsula, spread of Slavic-speaking peoples and political upheavals in China. © 2016 Macmillan Publishers Limited. All rights reserved

    Prominent role of volcanism in Common Era climate variability and human history

    Get PDF
    © 2020 Elsevier GmbH Climate reconstructions for the Common Era are compromised by the paucity of annually-resolved and absolutely-dated proxy records prior to medieval times. Where reconstructions are based on combinations of different climate archive types (of varying spatiotemporal resolution, dating uncertainty, record length and predictive skill), it is challenging to estimate past amplitude ranges, disentangle the relative roles of natural and anthropogenic forcing, or probe deeper interrelationships between climate variability and human history. Here, we compile and analyse updated versions of all the existing summer temperature sensitive tree-ring width chronologies from the Northern Hemisphere that span the entire Common Era. We apply a novel ensemble approach to reconstruct extra-tropical summer temperatures from 1 to 2010 CE, and calculate uncertainties at continental to hemispheric scales. Peak warming in the 280s, 990s and 1020s, when volcanic forcing was low, was comparable to modern conditions until 2010 CE. The lowest June–August temperature anomaly in 536 not only marks the beginning of the coldest decade, but also defines the onset of the Late Antique Little Ice Age (LALIA). While prolonged warmth during Roman and medieval times roughly coincides with the tendency towards societal prosperity across much of the North Atlantic/European sector and East Asia, major episodes of volcanically-forced summer cooling often presaged widespread famines, plague outbreaks and political upheavals. Our study reveals a larger amplitude of spatially synchronized summer temperature variation during the first millennium of the Common Era than previously recognised
    corecore