4,957 research outputs found

    Solar X-ray spectrum reproduced in vacuum

    Get PDF
    Desired low energy X rays are produced by modifying commercial ion tubes and combining them with standard power supplies and control circuitry. These X rays have less deviation from the solar X ray spectrum in energy and intensity

    Forecasting Value-at-Risk with Time-Varying Variance, Skewness and Kurtosis in an Exponential Weighted Moving Average Framework

    Get PDF
    This paper provides an insight to the time-varying dynamics of the shape of the distribution of financial return series by proposing an exponential weighted moving average model that jointly estimates volatility, skewness and kurtosis over time using a modified form of the Gram-Charlier density in which skewness and kurtosis appear directly in the functional form of this density. In this setting VaR can be described as a function of the time-varying higher moments by applying the Cornish-Fisher expansion series of the first four moments. An evaluation of the predictive performance of the proposed model in the estimation of 1-day and 10-day VaR forecasts is performed in comparison with the historical simulation, filtered historical simulation and GARCH model. The adequacy of the VaR forecasts is evaluated under the unconditional, independence and conditional likelihood ratio tests as well as Basel II regulatory tests. The results presented have significant implications for risk management, trading and hedging activities as well as in the pricing of equity derivatives

    Gravitational collapse of plasmas in General Relativity

    Full text link
    We provide a covariant derivation of plasma physics coupled to gravitation by utilizing the 3+1 formulation of general relativity, including a discussion of the Lorentz force law. We then reduce the system to the spherically symmetric case and show that all regions of the spacetime can be represented in a single coordinate system, thus revoking the need for junction conditions. We further show that the region exterior to the collapsing region is naturally described by the charged Vaidya spacetime in non-null coordinates.Comment: Talk given at the Spanish Relativity Meeting, Tenerife, September 200

    Quantum criticality of the sub-ohmic spin-boson model

    Full text link
    We revisit the critical behavior of the sub-ohmic spin-boson model. Analysis of both the leading and subleading terms in the temperature dependence of the inverse static local spin susceptibility at the quantum critical point, calculated using a numerical renormalization-group method, provides evidence that the quantum critical point is interacting in cases where the quantum-to-classical mapping would predict mean-field behavior. The subleading term is shown to be consistent with an w/T scaling of the local dynamical susceptibility, as is the leading term. The frequency and temperature dependences of the local spin susceptibility in the strong-coupling (delocalized) regime are also presented. We attribute the violation of the quantum-to-classical mapping to a Berry-phase term in a continuum path-integral representation of the model. This effect connects the behavior discussed here with its counterparts in models with continuous spin symmetry.Comment: 9 pages, 10 figure

    Universal out-of-equilibrium Transport in Kondo-correlated quantum dots: Renormalized dual Fermions on the Keldysh contour

    Full text link
    The nonlinear conductance of semiconductor heterostructures and single molecule devices exhibiting Kondo physics has recently attracted attention. We address the observed sample dependence of the measured steady state transport coefficients by considering additional electronic contributions in the effective low-energy model underlying these experiments that are absent in particle-hole symmetric setups. A novel version of the superperturbation theory of Hafermann et al. in terms of dual fermions is developed, which correctly captures the low-temperature behavior. We compare our results with the measured transport coefficients.Comment: 5 pages, 2 figure

    Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption

    No full text
    We simulate climate change for the 2-year period following the eruption of Mount Pinatubo in the Philippines on June 15, 1991, with the ECHAM4 general circulation model (GCM). The model was forced by realistic aerosol spatial-time distributions and spectral radiative characteristics calculated using Stratospheric Aerosol, and Gas Experiment II extinctions and Upper Atmosphere Research Satellite-retrieved effective radii. We calculate statistical ensembles of GCM simulations with and without volcanic aerosols for 2 years after the eruption for three different sea surface temperatures (SSTs): climatological SST, El Nino-type SST of 1991-1993, and La Nina-type SST of 1984-1986. We performed detailed comparisons of calculated fields with observations, We analyzed the atmospheric response to Pinatubo radiative forcing and the ability of the GCM to reproduce it with different SSTs. The temperature of the tropical lower stratosphere increased by 4 K because of aerosol absorption of terrestrial longwave and solar near-infrared radiation. The heating is larger than observed, but that is because in this simulation we did not account for quasi-biennial oscillation (QBO) cooling and the cooling effects of volcanically induced ozone depletion. We estimated that both QBO and ozone depletion decrease the stratospheric temperature by about 2 K. The remaining 2 K stratospheric warming is in good agreement with observations. By comparing the runs with the Pinatubo aerosol forcing with those with no aerosols, we find that the model calculates a general cooling of the global troposphere, but with a clear winter warming pattern of surface air temperature over Northern Hemisphere continents. This pattern is consistent with the observed temperature patterns. The stratospheric heating and tropospheric summer cooling are directly caused by aerosol radiative effects, but the winter warming is indirect, produced by dynamical responses to the enhanced stratospheric latitudinal temperature gradient. The aerosol radiative forcing, stratospheric thermal response, and summer tropospheric cooling do not depend significantly on SST. The stratosphere-troposphere dynamic interactions and tropospheric climate response in winter are sensitive to SST

    Generalized Parton Distributions of ^3He

    Full text link
    A realistic microscopic calculation of the unpolarized quark Generalized Parton Distribution (GPD) Hq3H_q^3 of the 3He^3He nucleus is presented. In Impulse Approximation, Hq3H_q^3 is obtained as a convolution between the GPD of the internal nucleon and the non-diagonal spectral function, describing properly Fermi motion and binding effects. The proposed scheme is valid at low values of Δ2\Delta^2, the momentum transfer to the target, the most relevant kinematical region for the coherent channel of hard exclusive processes. The obtained formula has the correct forward limit, corresponding to the standard deep inelastic nuclear parton distributions, and first moment, giving the charge form factor of 3He^3He. Nuclear effects, evaluated by a modern realistic potential, are found to be larger than in the forward case. In particular, they increase with increasing the momentum transfer when the asymmetry of the process is kept fixed, and they increase with the asymmetry at fixed momentum transfer. Another relevant feature of the obtained results is that the nuclear GPD cannot be factorized into a Δ2\Delta^2-dependent and a Δ2\Delta^2-independent term, as suggested in prescriptions proposed for finite nuclei. The size of nuclear effects reaches 8 % even in the most important part of the kinematical range under scrutiny. The relevance of the obtained results to study the feasibility of experiments is addressed.Comment: 23 pages, 8 figures; Discussion in section II enlarged; discussion in section IV shortened. Final version accepted by Phys. Rev.
    • …
    corecore