32 research outputs found

    Projection of Thermal Bioclimate Conditions over West Bengal, India in Response to Global Warming Based on Climate Model

    Get PDF
    The study of human bioclimatic conditions is becoming popular in climate perception for the improvement of the public health system. The objective of the present study is to analyze the past and future thermal bioclimate conditions over 15 stations in West Bengal (WB), India. The bioclimate conditions are measured by the daily Physiologically Equivalent Temperature (PET) based on climate data extracted from the Coordinated Regional Downscaling Experiment (CORDEX)-South Asia. The initial purpose of this study is to present the interannual distribution of PET classes over the considered stations of WB for the past period (1986–2005) and two future time periods, namely (i) near future (2016–2035) and (ii) mid-21st century (2046–2065). The results from the monthly distribution of PET reveal heat stress conditions from April to June and acceptable thermal conditions from November that persist till March for all the stations except Darjeeling, a hill station. To focus on future PET changes over WB in context to the reference period (1986–2005), warm and hot PET classes show prominent rises in the future epochs under the RCP4.5 and RCP8.5 emission scenarios. The highest percentage in the warm PET class (35.7–43.8 °C) appears in stations near the Bay of Bengal such as Digha, Diamond Harbour, Canning, and Baruipur during the mid-21st century time slice under RCP8.5 conditions. Simultaneously, hot PET class (>43.8 °C) records up to 10% for Kolkata, Dum Dum, Kharagpur, Siliguri and more than 10% in Sriniketan, Malda, Asansol, and Birbhum. Darjeeling will experience the greatest decrease in the very cool PET class (<3.3 °C) in the medium term. The explicit amount of change in temperature is seemingly connected to the increasing levels of heat stress over WB, as is evident from the relative mean monthly changes in PET

    Future Changes in Thermal Bioclimate Conditions over West Bengal, India, Based on a Climate Model

    Get PDF
    Changes in extreme human bioclimate conditions are accepted evidence for and serve as a broad measure of anthropogenic climate change. The essential objective of the current study was to investigate past and future thermal bioclimate conditions across West Bengal (WB), India. The daily physiologically equivalent temperature (PET) was calculated by considering definite climate variables as inputs. These meteorological variables were captured from the Coordinated Regional Downscaling Experiment (CORDEX)-South Asia. The initial results from this research work present the mean monthly distribution of each PET class over the considered stations of WB during the period (1986–2005) and three future time periods: (i) near future (2016–2035), (ii) mid-future (2046–2065), and (iii) far future (2080–2099). It was observed that the months from April to June comprise heat stress months in terms of human thermal perception, whereas thermally acceptable conditions begin in November and continue until March for most stations. Results from future PET changes over WB in the context of the reference period (1986–2005) reveal a prominent increase in warm and hot PETs for all future time periods in two different greenhouse gas emission scenarios. During the far-future time period, stations within a kilometer of the Bay of Bengal such as Digha, Diamond Harbour, Canning, and Baruipur account for the highest percentage in the warm PET class (35.7–43.8 °C) in high-end emission scenarios. Simultaneously, during the period from 2080 to 2099, Kolkata, Dum Dum, Kharagpur, and Siliguri will experience a PET greater than 43.8 °C for close to 10% of the days in the year and more than 10% in Sriniketan, Malda, Asansol, and Birbhum. During the far-future period, a negative change in the very cool PET class (<3.3 °C) indicating a decrease in cold days was the largest for Darjeeling

    Pinatubo eruption winter climate effects: Model versus observations

    Get PDF
    Large volcanic eruptions, in addition to the well-known effect of producing global cooling for a year or two, have been observed to produce shorter-term responses in the climate system involving non-linear dynamical processes. In this paper, we use the ECHAM2 general circulation model forced with stratospheric aerosols to test some of these ideas. Run in a perpetual-January mode, with tropical stratospheric heating from the volcanic aerosols typical of the 1982 El Chichon eruption or the 1991 Pinatubo eruption, we find a dynamical response with an increased polar night jet in the Northern Hemisphere (NH) and stronger zonal winds which extended down into the troposphere. The Azores High shifts northward with increased tropospheric westerlies at 60N and increased easterlies at 30N. Surface temperatures are higher both in northern Eurasia and North America, in agreement with observations for the NH winters or 1982-83 and 1991-92 as well as the winters following the other 10 largest volcanic eruptions since 1883

    Mechanisms of hydrological responses to volcanic eruptions in the Asian monsoon and westerlies-dominated subregions

    Get PDF
    Explosive volcanic eruptions affect surface climate, especially in monsoon regions, but responses vary in different regions and to volcanic aerosol injection (VAI) in different hemispheres. Here, we use six ensemble members from the last-millennium experiment of the Coupled Model Intercomparison Project Phase 5 to investigate the mechanisms of regional hydrological responses to different hemispheric VAIs in the Asian monsoon region (AMR). Northern hemispheric VAI (NHVAI) leads to an intensified aridity over the AMR after northern hemispheric VAI (NHVAI); spatially, a distinct inverse response pattern to the climatological conditions emerges, with an intensified aridity in the relatively wettest area (RWA) but a weakened aridity in the relatively driest area (RDA) of the AMR. Southern hemispheric VAI (SHVAI) shows a weakened aridity over the AMR, but the spatial response pattern is not that clear due to small aerosol magnitude. The mechanism of the hydrological impact relates to the indirect change of atmospheric circulation due to the direct radiative effect of volcanic aerosols. The decreased thermal contrast between the land and the ocean after NHVAI results in a weakened East Asian summer monsoon and South Asian summer monsoon. This changes the moisture transport and cloud formation in the monsoon and westerlies-dominated subregions. The subsequent radiative effect and physical feedbacks of local clouds lead to different hydrological effects in different areas. Results here indicate that future volcanic eruptions may temporarily alleviate the uneven distribution of precipitation in the AMR, which should be considered in the near-term climate predictions and future strategies of local adaptation to global warming. The local hydrological responses and mechanisms found here can also provide a reference for stratospheric aerosol engineering

    Sensitivity studies with the regional climate model COSMO-CLM 5.0 over the CORDEX Central Asia Domain

    Get PDF
    Due to its extension, geography and the presence of several underdeveloped or developing economies, the Central Asia domain of the Coordinated Regional Climate Downscaling Experiment (CORDEX) is one of the most vulnerable regions on Earth to the effects of climate changes. Reliable information on potential future changes with high spatial resolution acquire significant importance for the development of effective adaptation and mitigation strategies for the region. In this context, regional climate models (RCMs) play a fundamental role. In this paper, the results of a set of sensitivity experiments with the regional climate model COSMO-CLM version 5.0, for the Central Asia CORDEX domain, are presented. Starting from a reference model setup, general model performance is evaluated for the present day, testing the effects of singular changes in the model physical configuration and their mutual interaction with the simulation of monthly and seasonal values of three variables that are important for impact studies: near-surface temperature, precipitation and diurnal temperature range. The final goal of this study is two-fold: having a general overview of model performance and its uncertainties for the considered region and determining at the same time an optimal model configuration. Results show that the model presents remarkable deficiencies over different areas of the domain. The combined change of the albedo, taking into consideration the ratio of forest fractions, and the soil conductivity, taking into account the ratio of liquid water and ice in the soil, allows one to achieve the best improvements in model performance in terms of climatological means. Importantly, the model seems to be particularly sensitive to those parameterizations that deal with soil and surface features, and that could positively affect the repartition of incoming radiation. The analyses also show that improvements in model performance are not achievable for all domain subregions and variables, and they are the result of a compensation effect in the different cases. The proposed better performing configuration in terms of mean climate leads to similar positive improvements when considering different observational data sets and boundary data employed to force the simulations. On the other hand, due to the large uncertainties in the variability estimates from observations, the use of different boundaries and the model internal variability, it has not been possible to rank the different simulations according to their representation of the monthly variability. This work is the first ever sensitivity study of an RCM for the CORDEX Central Asia domain and its results are of fundamental importance for further model development and for future climate projections over the area

    Precipitation Over Southern Africa: Moisture Sources and Isotopic Composition

    Get PDF
    Southern Africa, with its vast arid to semiarid areas, is considered vulnerable to precipitation changes and amplifying weather extremes. However, during the last 100 ka, huge lakes existed in the currently dry central Kalahari. It has been suggested that these lakes could have existed due to altered atmospheric circulation pattern, leading to an increase in precipitation or to changes in the annual precipitation distribution. Past climate changes are recorded in paleo-archives, yet, for a proper interpretation of paleo-records, for example, from sedimentological archives or fossils, it is essential to put them in a context with recent observations. This study’s objective is, therefore, to analyze spatially differing annual precipitation distributions at multiple locations in southern Africa with respect to their stable water isotope composition, moisture transport pathways, and sources. Five different precipitation distributions are identified by end-member modeling and respective rainfall zones are inferred, which differ significantly in their isotopic compositions. By calculating backward trajectories, different moisture source regions are identified for the rainfall zones and linked to typical circulation patterns. Our results furthermore show the importance of the seasonality, the amount effect, and the traveled distance of the moisture for the general isotopic composition over the entire southern Africa. The identified pattern and relationships can be useful in the evaluation of isotope-enabled climate models for the region and are potentially of major importance for the interpretation of stable water isotope composition in paleo-records in future research

    ICON in Climate Limited-area Mode (ICON release version 2.6.1): a new regional climate model

    Get PDF
    For the first time, the Limited-Area Mode of the new ICON (Icosahedral Nonhydrostatic) weather and climate model has been used for a continuous long-term regional climate simulation over Europe. Built upon the Limited-Area Mode of ICON (ICON-LAM), ICON-CLM (ICON in Climate Limited-area Mode, hereafter ICON-CLM, available in ICON release version 2.6.1) is an adaptation for climate applications. A first version of ICON-CLM is now available and has already been integrated into a starter package (ICON-CLM_SP_betal). The starter package provides users with a technical infrastructure that facilitates long-term simulations as well as model evaluation and test routines. ICON-CLM and ICON-CLM_SP were successfully installed and tested on two different computing systems. Tests with different domain decompositions showed bit-identical results, and no systematic outstanding differences were found in the results with different model time steps. ICON-CLM was also able to reproduce the large-scale atmospheric information from the global driving model. Comparison was done between ICON-CLM and the COnsortium for Small-scale MOdeling (COSMO)-CLM (the recommended model configuration by the CLM-Community) performance. For that, an evaluation run of ICON-CLM with ERA-Interim boundary conditions was carried out with the setup similar to the COSMO-CLM recommended optimal setup. ICON-CLM results showed biases in the same range as those of COSMO-CLM for all evaluated surface variables. While this COSMO-CLM simulation was carried out with the latest model version which has been developed and was carefully tuned for climate simulations on the European domain, ICON-CLM was not tuned yet. Nevertheless, ICON-CLM showed a better performance for air temperature and its daily extremes, and slightly better performance for total cloud cover. For precipitation and mean sea level pressure, COSMO-CLM was closer to observations than ICON-CLM. However, as ICON-CLM is still in the early stage of development, there is still much room for improvement

    Tip- and laser-based 3D nanofabrication in extended macroscopic working areas

    Get PDF
    The field of optical lithography is subject to intense research and has gained enormous improvement. However, the effort necessary for creating structures at the size of 20 nm and below is considerable using conventional technologies. This effort and the resulting financial requirements can only be tackled by few global companies and thus a paradigm change for the semiconductor industry is conceivable: custom design and solutions for specific applications will dominate future development (Fritze in: Panning EM, Liddle JA (eds) Novel patterning technologies. International society for optics and photonics. SPIE, Bellingham, 2021. https://doi.org/10.1117/12.2593229). For this reason, new aspects arise for future lithography, which is why enormous effort has been directed to the development of alternative fabrication technologies. Yet, the technologies emerging from this process, which are promising for coping with the current resolution and accuracy challenges, are only demonstrated as a proof-of-concept on a lab scale of several square micrometers. Such scale is not adequate for the requirements of modern lithography; therefore, there is the need for new and alternative cross-scale solutions to further advance the possibilities of unconventional nanotechnologies. Similar challenges arise because of the technical progress in various other fields, realizing new and unique functionalities based on nanoscale effects, e.g., in nanophotonics, quantum computing, energy harvesting, and life sciences. Experimental platforms for basic research in the field of scale-spanning nanomeasuring and nanofabrication are necessary for these tasks, which are available at the Technische Universität Ilmenau in the form of nanopositioning and nanomeasuring (NPM) machines. With this equipment, the limits of technical structurability are explored for high-performance tip-based and laser-based processes for enabling real 3D nanofabrication with the highest precision in an adequate working range of several thousand cubic millimeters
    corecore