509 research outputs found

    Quantum communication between trapped ions through a dissipative environment

    Full text link
    We study two trapped ions coupled to the axial phonon modes of a one-dimensional Coulomb crystal. This system is formally equivalent to the "two spin-boson" model. We propose a scheme to dynamically generate a maximally entangled state of two ions within a decoherence-free subspace. Here the phononic environment of the trapped ions, whatever its temperature and number of modes, serves as the entangling bus. The efficient production of the pure singlet state can be exploited to perform short-ranged quantum communication which is essential in building up a large-scale quantum computer.Comment: 4 pages, 2 figure

    Deterministic entanglement of ions in thermal states of motion

    Full text link
    We give a detailed description of the implementation of a Molmer-Sorensen gate entangling two Ca+ ions using a bichromatic laser beam near-resonant with a quadrupole transition. By amplitude pulse shaping and compensation of AC-Stark shifts we achieve a fast gate operation without compromising the error rate. Subjecting different input states to concatenations of up to 21 individual gate operations reveals Bell state fidelities above 0.80. In principle, the entangling gate does not require ground state cooling of the ions as long as the Lamb-Dicke criterion is fulfilled. We present the first experimental evidence for this claim and create Bell states with a fidelity of 0.974(1) for ions in a thermal state of motion with a mean phonon number of =20(2) in the mode coupling to the ions' internal states.Comment: 18 pages, 9 figures (author name spelling corrected

    Entanglement at the quantum phase transition in a harmonic lattice

    Full text link
    The entanglement properties of the phase transition in a two dimensional harmonic lattice, similar to the one observed in recent ion trap experiments, are discussed both, for finite number of particles and thermodynamical limit. We show that for the ground state at the critical value of the trapping potential two entanglement measures, the negativity between two neighbouring sites and the block entropy for blocks of size 1, 2 and 3, change abruptly. Entanglement thus indicates quantum phase transitions in general; not only in the finite dimensional case considered in [Phys. Rev. Lett. {\bf 93}, 250404 (2004)]. Finally, we consider the thermal state and compare its exact entanglement with a temperature entanglement witness introduced in [Phys. Rev. A {\bf 77} 062102 (2008)].Comment: extended published versio

    Photon Shot Noise Dephasing in the Strong-Dispersive Limit of Circuit QED

    Full text link
    We study the photon shot noise dephasing of a superconducting transmon qubit in the strong-dispersive limit, due to the coupling of the qubit to its readout cavity. As each random arrival or departure of a photon is expected to completely dephase the qubit, we can control the rate at which the qubit experiences dephasing events by varying \textit{in situ} the cavity mode population and decay rate. This allows us to verify a pure dephasing mechanism that matches theoretical predictions, and in fact explains the increased dephasing seen in recent transmon experiments as a function of cryostat temperature. We investigate photon dynamics in this limit and observe large increases in coherence times as the cavity is decoupled from the environment. Our experiments suggest that the intrinsic coherence of small Josephson junctions, when corrected with a single Hahn echo, is greater than several hundred microseconds.Comment: 5 pages, 4 figures; includes Supporting Online Material of 6 pages with 5 figure

    State-independent quantum violation of noncontextuality in four dimensional space using five observables and two settings

    Full text link
    Recently, a striking experimental demonstration [G. Kirchmair \emph{et al.}, Nature, \textbf{460}, 494(2009)] of the state-independent quantum mechanical violation of non-contextual realist models has been reported for any two-qubit state using suitable choices of \emph{nine} product observables and \emph{six} different measurement setups. In this report, a considerable simplification of such a demonstration is achieved by formulating a scheme that requires only \emph{five} product observables and \emph{two} different measurement setups. It is also pointed out that the relevant empirical data already available in the experiment by Kirchmair \emph{et al.} corroborate the violation of the NCR models in accordance with our proof

    Pentagrams and paradoxes

    Full text link
    Klyachko and coworkers consider an orthogonality graph in the form of a pentagram, and in this way derive a Kochen-Specker inequality for spin 1 systems. In some low-dimensional situations Hilbert spaces are naturally organised, by a magical choice of basis, into SO(N) orbits. Combining these ideas some very elegant results emerge. We give a careful discussion of the pentagram operator, and then show how the pentagram underlies a number of other quantum "paradoxes", such as that of Hardy.Comment: 14 pages, 4 figure
    corecore