2,973 research outputs found

    Brentano’s lectures on positivism (1893-1894) and his relationship to Ernst Mach

    Get PDF
    This paper is mainly about Brentano’s commentaries on Ernst Mach in his lectures “Contemporary philosophical questions” which he held one year before he left Austria. I will first identify the main sources of Brentano’s interests in Comte’s and J. S. Mill’s positivism during his Würzburg period. The second section provides a short overview of Brentano’s 1893-1894 lectures and his criticism of Comte, Kirchhoff, and Mill. The next sections bear on Brentano’s criticism of Mach’s monism and Brentano’s argument against the reduction of the mental based on his theory of intentionality. The last section is about Brentano’s proposal to replace the identity relation in Mach’s theory of elements by that of intentional correlation. I conclude with a remark on the history of philosophy in Austria

    Loss of Nef-mediated CD3 down-regulation in the HIV-1 lineage increases viral infectivity and spread

    Get PDF
    Nef is an accessory protein of primate lentiviruses that is essential for efficient replication and pathogenesis of HIV-1. A conserved feature of Nef proteins from different lentiviral lineages is the ability to modulate host protein trafficking and down-regulate a number of cell surface receptors to enhance replication and promote immune evasion. Notably, the inability of Nef to down-regulate CD3 from infected T cells distinguishes HIV-1 Nef and its direct simian precursors from other primate lentiviruses. Why HIV-1 does not employ this potential immune evasion strategy is not fully understood. Using chimeric HIV-1 constructs expressing lentiviral Nef proteins that differ in their ability to down-modulate CD3, we show that retaining CD3 on the surface of infected primary T cells results in increased viral replication and cell-to-cell spread. We identified increased expression of envelope (Env) trimers at the cell surface and increased Env incorporation into virions as the determinants for the Nef- and CD3-dependent enhancement of viral infectivity. Importantly, this was independent of Nef-mediated antagonism of the host restriction factor SERINC5. CD3 retention on the surface of infected primary T cells also correlated with increased T cell signaling, activation, and cell death during cell-to-cell spread. Taken together, our results show that loss of an otherwise conserved function of Nef has a positive effect on HIV-1 replication, allowing for more efficient replication while potentially contributing to HIV-1 pathogenesis by triggering T cell activation and cell death during viral spread

    Chrysanthemum species used as food and medicine: Understanding quality differences on the global market

    Get PDF
    Background Chrysanthemum flowers [Ch. x morifolium (Ramat.) Hemsl. and Ch. indicum L.] are a globally used and pharmacologically interesting botanical drug, however, with variable product quality. Objective We aim at understanding the chemical variability of primary material available commercially based on different origins and associated quality problems like contamination with heavy metals. This needs to be assessed in the context of the current regulations for this botanical drug and associated problems. Material and Methods 15 C. indicum L. and 50 C. x morifolium (Ramat.) Hemsl., including a range of geographical cultivars recognized in China, samples from the USA, Europe and China were analyzed using High Performance Thin Layer Chromatography (HPTLC) to compare their general chemical profile. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) was used to quantify heavy metal contamination. Results The: HPTLC fingerprints of C. indicum samples are clearly distinguishable from C. x morifolium. Fingerprints of samples from the same cultivars collected from markets in different countries (USA and China) show different patterns. Large variance of fingerprints within each cultivar group was observed. The heavy metal analysis showed excessive amounts of some harmful heavy metal in some commercial products with excessive cadmium being the most frequent problem. Conclusions The Chinese medicinal cultivars vary. Differences between samples sourced from the USA and China might be ascribable to geographical factors (e.g. soil composition), degradation during transport/storage or adulteration, but geographical differences should also be taken into account. Importantly, a much more detailed definition of the drug are needed for better quality control. In addition, with continuous contamination problem observed, a more widespread regulation is an essential requirement for better quality

    Photoconductivity Parameters In Lithium Niobate

    Get PDF
    Measurements on a variety of doped (magnesium and/or iron) and undoped lithium niobate crystals in the oxidized state demonstrate an Arrhenius dependence of dark conductivity on reciprocal temperature between 460 and 590 K. All of the crystals had roughly the same conductivity and activation energy (1.21 eV) over the temperature range, implying that all have about the same free-carrier concentration and mobility. The enhanced photoconductivity of magnesium-doped lithium niobate is attributed to a greatly reduced trapping cross section of Fe3+ for electrons, the smaller cross section being due to a changed substitutional site for Fe3+. The Fe3+ trapping cross section is calculated from photoconductivity data to be of order 10-18 m2 in undoped lithium niobate. This implies a photoelectron lifetime of order 6x10-11 s in a relatively pure (2-ppm Fe) oxidized crystal

    Ab-initio simulation of high-temperature liquid selenium

    Full text link
    Ab initio molecular dynamics simulation is used to investigate the structure and dynamics of liquid Se at temperatures of 870 and 1370~K. The calculated static structure factor is in excellent agreement with experimental data. The calculated radial distribution function gives a mean coordination number close to 2, but we find a significant fraction of one-fold and three-fold atoms, particularly at 1370~K, so that the chain structure is considerably disrupted. The self-diffusion coefficient has values (1×108\sim 1 \times 10^{-8}~m~s1^{-1}) typical of liquid metals.Comment: 10 pages, 4 Poscript figures, uses REVTE

    Theory of impedance networks: The two-point impedance and LC resonances

    Get PDF
    We present a formulation of the determination of the impedance between any two nodes in an impedance network. An impedance network is described by its Laplacian matrix L which has generally complex matrix elements. We show that by solving the equation L u_a = lambda_a u_a^* with orthonormal vectors u_a, the effective impedance between nodes p and q of the network is Z = Sum_a [u_{a,p} - u_{a,q}]^2/lambda_a where the summation is over all lambda_a not identically equal to zero and u_{a,p} is the p-th component of u_a. For networks consisting of inductances (L) and capacitances (C), the formulation leads to the occurrence of resonances at frequencies associated with the vanishing of lambda_a. This curious result suggests the possibility of practical applications to resonant circuits. Our formulation is illustrated by explicit examples.Comment: 21 pages, 3 figures; v4: typesetting corrected; v5: Eq. (63) correcte

    High-Precision Entropy Values for Spanning Trees in Lattices

    Full text link
    Shrock and Wu have given numerical values for the exponential growth rate of the number of spanning trees in Euclidean lattices. We give a new technique for numerical evaluation that gives much more precise values, together with rigorous bounds on the accuracy. In particular, the new values resolve one of their questions.Comment: 7 pages. Revision mentions alternative approach. Title changed slightly. 2nd revision corrects first displayed equatio

    Super-resolution provided by the arbitrarily strong superlinearity of the blackbody radiation

    Get PDF
    Blackbody radiation is a fundamental phenomenon in nature, and its explanation by Planck marks a cornerstone in the history of Physics. In this theoretical work, we show that the spectral radiance given by Planck's law is strongly superlinear with temperature, with an arbitrarily large local exponent for decreasing wavelengths. From that scaling analysis, we propose a new concept of super-resolved detection and imaging: if a focused beam of energy is scanned over an object that absorbs and linearly converts that energy into heat, a highly nonlinear thermal radiation response is generated, and its point spread function can be made arbitrarily smaller than the excitation beam focus. Based on a few practical scenarios, we propose to extend the notion of super-resolution beyond its current niche in microscopy to various kinds of excitation beams, a wide range of spatial scales, and a broader diversity of target objects
    corecore