1,184 research outputs found

    Soil fertility in sweetpotato-based cropping systems in the highlands of Papua New Guinea

    Get PDF
    The main outputs anticipated include enchanced knowledge of key water-nutrient dynamics in relation to key soil management techniques and a suite of improved and practical soil management options in sweet potatoes

    Ground cover by three crops cultivated on marginal lands in southwestern Nigeria and implications for soil erosion

    Get PDF
    Resource-poor farmers in developing nations cultivate marginal lands, thereby exacerbating the problem of soil degradation through poor plant growth and ground coverage. An assessment of ground cover under such a practice will provide a guideline for soil conservation. Ground cover by leguminous cover crops (e.g., Mucuna pruriens, Pueraria phaseoloides and Vigna unguiculata), associated with yam, maize and rice was measured in three different experiments in southwestern Nigeria using beaded-string method while leaf area was measured using a flat-bed scanner. The leaf area was used in obtaining equivalent of ground cover fraction from the leaf area index. Ground cover by yam wa

    Jatropha Curcas Development as Intervention Potential to Tackling Land, Energy and Food Challenges of Rural Communities in Dryland Sub-Saharan Africa

    Get PDF
    Global population growth is placing increasing pressures on land for food and feed production as well as energy security. In particular in sub-Saharan Africa (SSA), these issues require urgent attention. This is clearly stated in The United Nations Global Goals for Sustainable Development emphasizing the importance of sustainable use of land resources to increase food productivity and energy requirement. SSA lags behind most regions of the world in household food security and access to energy. The rural agriculture-dependent communities of SSA are the hardest hit by food and energy scarcity and the impact is felt most by communities in the dryland farming areas. In terms of energy supply appropriate measures and interventions are required to address this challenge. Jatropha curcas L. oil fast tracked itself from obscurity to prominence. Its main advantage is the high content of methyl ester (or bio-diesel). It conforms to EN 14214 specifications, exhibiting emission reduction potential and qualifying as a lucrative bio-diesel alternative to fossil diesel. This paper proposes a focus on Jatropha technology as a holistic approach to tackling the land, energy and food degradation challenges in unison for dry-land SSA. The new Jatropha strategy would be innovative and environmentally friendly soil resource recapitalization and supply feed stock for rural energy generation while fulfilling the criteria of delivering other benefits, such as addressing land use conflict for food and energy production

    Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2

    Get PDF
    In recent years, there has been ongoing effort in achieving efficient transport of excitons in monolayer transition metal dichalcogenides subjected to highly non-uniform strain. Here we investigate the transport of excitons and trions in monolayer semiconductor WS2 subjected to controlled non-uniform mechanical strain. An atomic force microscope (AFM)-based setup is applied to actively control and tune the strain profiles by indenting the monolayer with an AFM tip. Optical spectroscopy is used to reveal the dynamics of the excited carriers. The non-uniform strain configuration locally changes the valence and conduction bands of WS2, giving rise to effective forces attracting excitons and trions towards the point of maximum strain underneath the AFM tip. We observe large changes in the photoluminescence spectra of WS2 under strain, which we interpret using a drift–diffusion model. We show that the transport of neutral excitons, a process that was previously thought to be efficient in non-uniformly strained two-dimensional semiconductors and termed as funnelling, is negligible at room temperature, in contrast to previous observations. Conversely, we discover that redistribution of free carriers under non-uniform strain profiles leads to highly efficient conversion of excitons to trions. Conversion efficiency reaches up to about 100% even without electrical gating. Our results explain inconsistencies in previous experiments and pave the way towards new types of optoelectronic devices

    Stomatin-like Protein 2 Links Mitochondria to T-Cell Receptor Signalosomes at the Immunological Synapse and Enhances T-Cell Activation

    Get PDF
    T cell activation through the antigen receptor (TCR) requires sustained signalling from microclusters in the peripheral region of the immunological synapse (IS). The bioenergetics of such prolonged signaling have been linked to the redistribution of mitochondria to the IS. Here, we report that stomatin-like protein-2 (SLP-2) plays an important role in this process by bridging polarized mitochondria to these signaling TCR microclusters or signalosomes in the IS in a polymerized actin-dependent manner. In this way, SLP-2 helps to sustain TCR-dependent signalling and enhances T cell activation

    Can we improve outcomes in AF patients by early therapy?

    Get PDF
    Atrial fibrillation affects at least 1% of the population and causes marked society-wide morbidity and mortality. Current management of atrial fibrillation including antithrombotic therapy and management of concomitant conditions in all patients, rate control therapy in most patients, and rhythm control therapy in patients with severe atrial fibrillation-related symptoms can alleviate atrial fibrillation-related symptoms but can neither effectively prevent recurrent atrial fibrillation nor suppress atrial fibrillation-related complications. Hence, there is a need for better therapy of atrial fibrillation

    Causes of death in patients with atrial fibrillation anticoagulated with rivaroxaban:a pooled analysis of XANTUS

    Get PDF
    Aims: Anticoagulation can prevent stroke and prolong lives in patients with atrial fibrillation (AF). However, anticoagulated patients with AF remain at risk of death. The aim of this study was to investigate the causes of death and factors associated with all-cause and cardiovascular death in the XANTUS population. Methods and results: Causes of death occurring within a year after rivaroxaban initiation in patients in the XANTUS programme studies were adjudicated by a central adjudication committee and classified following international guidance. Baseline characteristics associated with all-cause or cardiovascular death were identified. Of 11 040 patients, 187 (1.7%) died. Almost half of these deaths were due to cardiovascular causes other than bleeding (n = 82, 43.9%), particularly heart failure (n = 38, 20.3%) and sudden or unwitnessed death (n = 24, 12.8%). Fatal stroke (n = 8, 4.3%), which was classified as a type of cardiovascular death, and fatal bleeding (n = 17, 9.1%) were less common causes of death. Independent factors associated with all-cause or cardiovascular death included age, AF type, body mass index, left ventricular ejection fraction, hospitalization at baseline, rivaroxaban dose, and anaemia. Conclusion: The overall risk of death due to stroke or bleeding was low in XANTUS. Anticoagulated patients with AF remain at risk of death due to heart failure and sudden death. Potential interventions to reduce cardiovascular deaths in anticoagulated patients with AF require further investigation, e.g. early rhythm control therapy and AF ablation. Trial registration numbers: NCT01606995, NCT01750788, NCT0180000

    Stationary phase expression of the arginine biosynthetic operon argCBH in Escherichia coli

    Get PDF
    BACKGROUND: Arginine biosynthesis in Escherichia coli is elevated in response to nutrient limitation, stress or arginine restriction. Though control of the pathway in response to arginine limitation is largely modulated by the ArgR repressor, other factors may be involved in increased stationary phase and stress expression. RESULTS: In this study, we report that expression of the argCBH operon is induced in stationary phase cultures and is reduced in strains possessing a mutation in rpoS, which encodes an alternative sigma factor. Using strains carrying defined argR, and rpoS mutations, we evaluated the relative contributions of these two regulators to the expression of argH using operon-lacZ fusions. While ArgR was the main factor responsible for modulating expression of argCBH, RpoS was also required for full expression of this biosynthetic operon at low arginine concentrations (below 60 μM L-arginine), a level at which growth of an arginine auxotroph was limited by arginine. When the argCBH operon was fully de-repressed (arginine limited), levels of expression were only one third of those observed in ΔargR mutants, indicating that the argCBH operon is partially repressed by ArgR even in the absence of arginine. In addition, argCBH expression was 30-fold higher in ΔargR mutants relative to levels found in wild type, fully-repressed strains, and this expression was independent of RpoS. CONCLUSION: The results of this study indicate that both derepression and positive control by RpoS are required for full control of arginine biosynthesis in stationary phase cultures of E. coli

    Neutral and charged excitons interplay in non-uniformly strain-engineered WS2

    Get PDF
    We investigate the response of excitons in two-dimensional semiconductors to nonuniformity of mechanical strain. In our approach to non-uniform strain-engineering, a WS2 monolayer is suspended over a triangular hole. Large (>2%), strongly non-uniform (>0.28% µm–1), and in-situ tunable strain is induced in WS2 by pressurizing it with inert gas. We observe a pronounced shift of the spectral weight from neutral to charged excitons at the center of the membrane, in addition to well-known strain-dependent bandgap modification. We show that the former phenomenon is a signature of a new effect unique for non-uniform strain: funneling of free carriers towards the region of high strain followed by neutral to charged exciton conversion. Our result establishes non-uniform strain engineering as a novel and useful experimental 'knob' for tuning optoelectronic properties of 2D semiconductors
    • …
    corecore