507 research outputs found

    FEniCS-HPC: Automated predictive high-performance finite element computing with applications in aerodynamics

    Get PDF
    Developing multiphysics finite element methods (FEM) and scalable HPC implementations can be very challenging in terms of software complexity and performance, even more so with the addition of goal-oriented adaptive mesh refinement. To manage the complexity we in this work present general adaptive stabilized methods with automated implementation in the FEniCS-HPC automated open source software framework. This allows taking the weak form of a partial differential equation (PDE) as input in near-mathematical notation and automatically generating the low-level implementation source code and auxiliary equations and quantities necessary for the adaptivity. We demonstrate new optimal strong scaling results for the whole adaptive framework applied to turbulent flow on massively parallel architectures down to 25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend and for assembly down to 500 vertices per core with ca. 20000 cores with the PGAS-based JANPACK backend. As a demonstration of the power of the combination of the scalability together with the adaptive methodology allowing prediction of gross quantities in turbulent flow we present an application in aerodynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmarking workshop with good match to experiments

    Understanding and predicting a complex behaviour using n-of-1 methods : Photoprotection in xeroderma pigmentosum

    Get PDF
    Acknowledgements: We would like to thank Lesley Foster (research nurse) for all her work in setting up the n-of-1 study with patients; the XP national clinical team (Hiva Fassihi, Tanya Henshaw, Sally Turner, Isabel Garrood, Alan Lehmann) and members of the PPI panel (Cathy Coleman, Ben Fowler, Sandra Webb, Ros Tobin) for input into design of materials. Funding: This research is funded by the National Institute for Health Research (NIHR) Programme Grants for Applied Research (RP-PG- 1212-20009). The views and opinions expressed therein are those of the authors and do not necessarily reflect those of the NIHR, NHS, or the Department of Health.Peer reviewedPostprin

    Next Gen NEAR: Near Earth Asteroid Human Robotic Precursor Mission Concept

    Get PDF
    Asteroids have long held the attention of the planetary science community. In particular, asteroids that evolve into orbits near that of Earth, called near-Earth objects (NEO), are of high interest as potential targets for exploration due to the relative ease (in terms of delta V) to reach them. NASA's Flexible Path calls for missions and experiments to be conducted as intermediate steps towards the eventual goal of human exploration of Mars; piloted missions to NEOs are such example. A human NEO mission is a valuable exploratory step beyond the Earth-Moon system enhancing capabilities that surpass our current experience, while also developing infrastructure for future mars exploration capabilities. To prepare for a human rendezvous with an NEO, NASA is interested in pursuing a responsible program of robotic NEO precursor missions. Next Gen NEAR is such a mission, building on the NEAR Shoemaker mission experience at the JHU/APL Space Department, to provide an affordable, low risk solution with quick data return. Next Gen NEAR proposes to make measurements needed for human exploration to asteroids: to demonstrate proximity operations, to quantify hazards for human exploration and to characterize an environment at a near-Earth asteroid representative of those that may be future human destinations. The Johns Hopkins University Applied Physics Laboratory has demonstrated exploration-driven mission feasibility by developing a versatile spacecraft design concept using conventional technologies that satisfies a set of science, exploration and mission objectives defined by a concept development team in the summer of 2010. We will describe the mission concept and spacecraft architecture in detail. Configuration options were compared with the mission goals and objectives in order to select the spacecraft design concept that provides the lowest cost, lowest implementation risk, simplest operation and the most benefit for the mission implementation. The Next Gen NEAR spacecraft was designed to support rendezvous with a range of candidate asteroid targets and could easily be launched with one of several NASA launch vehicles. The Falcon 9 launch vehicle supports a Next Gen NEAR launch to target many near-Earth asteroids under consideration that could be reached with a C3 of 18 km2/sec2 or less, and the Atlas V-401 provides added capability supporting launch to NEAs that require more lift capacity while at the same time providing such excess lift capability that another payload of opportunity could be launch in conjunction with Next Gen NEAR. Next Gen NEAR will measure and interact with the target surface in ways never undertaken at an asteroid, and will prepare for first human precursor mission by demonstrating exploration science operations at an accessible NEO. This flexible mission and spacecraft design concept supports target selection based on upcoming Earth-based observations and also provides opportunities for co-manifest & international partnerships. JHU/APL has demonstrated low cost, low risk, high impact missions and this mission will help to prepare NASA for human NEO exploration by combining the best of NASA s human and robotic exploration capabilities

    Opening of endothelial cell–cell contacts due to sonoporation

    Get PDF
    Ultrasound insonification of microbubbles can locally increase vascular permeability to enhance drug delivery. To control and optimize the therapeutic potential, we need to better understand the underlying biological mechanisms of the drug delivery pathways. The aim of this in vitro study was to elucidate the microbubble-endothelial cell interaction using the Brandaris 128 ultra-high-speed camera (up to 25 Mfps) coupled to a custom-built Nikon confocal microscope, to visualize both microbubble oscillation and the cellular response. Sonoporation and opening of cell-cell contacts by single αVβ3-targeted microbubbles (n = 152) was monitored up to 4 min after ultrasound insonification (2 MHz, 100–400 kPa, 10 cycles). Sonoporation occurred when microbubble excursion amplitudes exceeded 0.7 μm. Quantification of the influx of the fluorescent model drug propidium iodide upon sonoporation showed that the size of the created pore increased for larger microbubble excursion amplitudes. Microbubble-mediated opening of cell-cell contacts occurred as a cellular response upon sonoporation and did not correlate with the microbubble excursion amplitude itself. The initial integrity of the cell-cell contacts affected the susceptibly to drug delivery, since cell-cell contacts opened more often when cells were only partially attached to their neighbors (48%) than when fully attached (14%). The drug delivery outcomes were independent of nonlinear microbubble behavior, microbubble location, and cell size. In conclusion, by studying the microbubble–cell interaction at nanosecond and nanometer resolution the relationship between drug delivery pathways and their underlying mechanisms was further unraveled. These novel insights will aid the development of safe and efficient microbubble-mediated drug delivery

    Development, Implementation and Outcomes of a Quality Assurance System for the Provision of Continuous Renal Replacement Therapy in the Intensive Care Unit

    Get PDF
    Critically ill patients with requirement of continuous renal replacement therapy (CRRT) represent a growing intensive care unit (ICU) population. Optimal CRRT delivery demands continuous communication between stakeholders, iterative adjustment of therapy, and quality assurance systems. This Quality Improvement (QI) study reports the development, implementation and outcomes of a quality assurance system to support the provision of CRRT in the ICU. This study was carried out at the University of Kentucky Medical Center between September 2016 and June 2019. We implemented a quality assurance system using a step-wise approach based on the (a) assembly of a multidisciplinary team, (b) standardization of the CRRT protocol, (c) creation of electronic CRRT flowsheets, (d) selection, monitoring and reporting of quality metrics of CRRT deliverables, and (e) enhancement of education. We examined 34-month data comprising 1185 adult patients on CRRT (~ 7420 patient-days of CRRT) and tracked selected QI outcomes/metrics of CRRT delivery. As a result of the QI interventions, we increased the number of multidisciplinary experts in the CRRT team and ensured a continuum of education to health care professionals. We maximized to 100% the use of continuous veno-venous hemodiafiltration and doubled the percentage of patients using regional citrate anticoagulation. The delivered CRRT effluent dose (~ 30 ml/kg/h) and the delivered/prescribed effluent dose ratio (~ 0.89) remained stable within the study period. The average filter life increased from 26 to 31 h (p = 0.020), reducing the mean utilization of filters per patient from 3.56 to 2.67 (p = 0.054) despite similar CRRT duration and mortality rates. The number of CRRT access alarms per treatment day was reduced by 43%. The improvement in filter utilization translated into ~ 20,000 USD gross savings in filter cost per 100-patient receiving CRRT. We satisfactorily developed and implemented a quality assurance system for the provision of CRRT in the ICU that enabled sustainable tracking of CRRT deliverables and reduced filter resource utilization at our institution

    Bodyweight Perceptions among Texas Women: The Effects of Religion, Race/Ethnicity, and Citizenship Status

    Full text link
    Despite previous work exploring linkages between religious participation and health, little research has looked at the role of religion in affecting bodyweight perceptions. Using the theoretical model developed by Levin et al. (Sociol Q 36(1):157–173, 1995) on the multidimensionality of religious participation, we develop several hypotheses and test them by using data from the 2004 Survey of Texas Adults. We estimate multinomial logistic regression models to determine the relative risk of women perceiving themselves as overweight. Results indicate that religious attendance lowers risk of women perceiving themselves as very overweight. Citizenship status was an important factor for Latinas, with noncitizens being less likely to see themselves as overweight. We also test interaction effects between religion and race. Religious attendance and prayer have a moderating effect among Latina non-citizens so that among these women, attendance and prayer intensify perceptions of feeling less overweight when compared to their white counterparts. Among African American women, the effect of increased church attendance leads to perceptions of being overweight. Prayer is also a correlate of overweight perceptions but only among African American women. We close with a discussion that highlights key implications from our findings, note study limitations, and several promising avenues for future research

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure

    Genetic Variants of Ehrlichia phagocytophila1, Rhode Island and Connecticut

    Get PDF
    Primers were used to amplify a 561-bp region of the 16S rRNA gene of Ehrlichia phagocytophila from Ixodes scapularis ticks and small mammals collected in Rhode Island and Connecticut. DNA sequences for all 50 E. phagocytophila-positive samples collected from 1996 through 1998 in southwestern Connecticut were identical to the sequence reported for E. phagocytophila DNA from confirmed human cases. In contrast, the sequences from 92 of 123 E. phagocytophila-positive Rhode Island samples collected from 1996 through 1999 included several variants differing by 1-2 nucleotides from that in the agent infecting humans. While 11.9% of 67 E. phagocytophila-positive ticks collected during 1997 in Rhode Island harbored ehrlichiae with sequences identical to that of the human agent, 79.1% had a variant sequence not previously described. The low incidence of human ehrlichiosis in Rhode Island may in part result from interference by these variant ehrlichiae with maintenance and transmission of the true agent of human disease
    corecore