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Abstract. Developing multiphysics finite element methods (FEM) and
scalable HPC implementations can be very challenging in terms of soft-
ware complexity and performance, even more so with the addition of
goal-oriented adaptive mesh refinement. To manage the complexity we in
this work present general adaptive stabilized methods with automated
implementation in the FEniCS-HPC automated open source software
framework. This allows taking the weak form of a partial differential
equation (PDE) as input in near-mathematical notation and automati-
cally generating the low-level implementation source code and auxiliary
equations and quantities necessary for the adaptivity. We demonstrate
new optimal strong scaling results for the whole adaptive framework
applied to turbulent flow on massively parallel architectures down to
25000 vertices per core with ca. 5000 cores with the MPI-based PETSc
backend and for assembly down to 500 vertices per core with ca. 20000
cores with the PGAS-based JANPACK backend. As a demonstration of
the high impact of the combination of the scalability together with the
adaptive methodology allowing prediction of gross quantities in turbulent
flow we present an application in aerodynamics of a full DLR-F11 aircraft
in connection with the HiLift-PW2 benchmarking workshop with good
match to experiments.

1 Introduction

As computational methods are applied to simulate even more advanced problems
of coupled physical processes and supercomputing hardware is developed towards
massively parallel heterogeneous systems, it is a major challenge to manage the
complexity and performance of methods, algorithms and software implemen-
tations. Adaptive methods based on quantitative error control pose additional
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challenges. For simulation based on partial differential equation (PDE) models,
the finite element method (FEM) offers a general approach to numerical discreti-
sation, which opens for automation of algorithms and software implementation.

In this paper we present the FEniCS-HPC open source software framework
with the goal to combine the generality of FEM with performance, by optimisation
of generic algorithms [4, 2, 13]. We demonstrate the performance of FEniCS-HPC
in an application to subsonic aerodynamics.

We give an overview of the methodology and the FEniCS-HPC framework,
key aspects of the framework include:

1. Automated discretization where the weak form of a PDE in mathemat-
ical notation is translated into a system of algebraic equations using code
generation.

2. Automated error control, ensures that the discretization error e = u -
U in a given quantity is smaller than a given tolerance by adaptive mesh
refinement based on duality-based a posteriori error estimates. An a posteri
error estimate and error indicators are automatically generated from the
weak form of the PDE, by directly using the error representation.

3. Automated modeling, which includes a residual based implicit turbulence
model, where the turbulent dissipation comes only from the numerical stabi-
lization, as well as treating the fluid and solid in fluid-structure interaction
(FSI) as one continuum with a phase indicator function tracked by a moving
mesh and implicitly modeling contact.

We demonstrate new optimal strong scaling results for the whole adaptive
framework applied to turbulent flow on massively parallel architectures down to
25000 vertices per core with ca. 5000 cores with the MPI-based PETSc backend
and for assembly down to 500 vertices per core with ca. 20000 cores with the
PGAS-based JANPACK backend. We also present an application in aerodynamics
of a full DLR-F11 aircraft in connection with the HiLift-PW2 benchmarking
workshop with good match to experiments.

1.1 The FEniCS project and state of the art

The software described here is part of the FEniCS project [2], with the goal to
automate the scientific software process by relying on general implementations and
code generation, for robustness and to enable high speed of software development.

Deal.II [1] is a software framework with a similar goal, implementing general
PDE based on FEM in C++ where users write the “numerical integration
loop” for weak forms for computing the linear systems. The framework runs
on supercomputers with optimal strong scaling. Deal.II is based on quadrilater
(2D) and hexahedral (3D) meshes, whereas FEniCS is based on simplicial meshes
(triangles in 2D and tetrahedra in 3D).

Another FEM software framework with a similar goal is FreeFEM++ [3], which
has a high-level syntax close to mathematical notation, and has demonstrated
optimal strong scaling up to ca. 100 cores.
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2 The FEniCS-HPC framework

FEniCS-HPC is a problem-solving environment (PSE) for automated solution
of PDE by the FEM with a high-level interface for the basic concepts of FEM:
weak forms, meshes, refinement, sparse linear algebra, and with HPC concepts
such as partitioning, load balancing abstracted away.

The framework is based on components with clearly defined responsibilities.
A compact description of the main components follows, with their dependencies
shown in the dependency diagram in Figure 1:

FIAT: Automated generation of finite element spaces V and basis functions
φ ∈ V on the reference cell and numerical integration with FInite element
Automated Tabulator (FIAT) [13, 12]

e = (K,V,L)

where K is a cell in a mesh T , V is a finite-dimensional function space, L is
a set of degrees of freedom.

FFC+UFL: Automated evaluation of weak forms in mathematical notation on
one cell based on code generation with Unified Form Language (UFL) and
FEniCS Form Compiler (FFC) [13, 11], using the basis functions φ ∈ V from
FIAT. For example, in the case of the Laplacian operator

AKij = aK(φi, φj) =

∫
K

∇φi · ∇φjdx =

∫
K

lhs(r(φi, φj)dx)

where AK is the element stiffness matrix and r(·, ·) is the weak residual.
DOLFIN-HPC: Automated high performance assembly of weak forms and

interface to linear algebra of discrete systems and mesh refinement on a
distributed mesh TΩ [10].

A = 0
for all cells K ∈ TΩ

A += AK

Ax = b

Unicorn: Automated Unified Continuum modeling with Unicorn choosing a
specific weak residual form for incompressible balance equations of mass and
momentum with example visualizations of aircraft simulation below left and
turbulent FSI in vocal folds below right [4].

rUC((v, q), (u, p)) = (v, ρ(∂tu+(u·∇)u)+∇·σ−g)+(q,∇·u)+LS((v, q), (u, p))

where LS is a least-squares stabilizing term described in [7].
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Fig. 1: FEniCS-HPC component dependency diagram.

A user of FEniCS-HPC writes the weak forms in the UFL language, compiles
it with FFC, and includes it in a high-level “solver” written in C++ in DOLFIN-
HPC to read in a mesh, assemble the forms, solve linear systems, refine the mesh,
etc. The Unicorn solver for adaptive computation of turbulent flow and FSI is
developed as part of FEniCS-HPC.

2.1 Solving PDE problems in FEniCS-HPC

Poisson’s equation To solve Poisson’s equation in weak form
∫
Ω

(∇u,∇v)−
(f, u) = 0 ∀v ∈ V in the framework, we first define the weak form in a UFL
“form file”, closely mapping mathematical notation (see Figure 2). The form file
is then compiled to low-level C++ source code for assembling the local element
matrix and vector with FFC. Finally we use DOLFIN-HPC to write a high-level
“solver” in C++, composing the different abstractions, where a mesh is defined,
the global matrix and vector are assembled by interfacing to the generated source
code, the linear system is solved by an abstract parallel linear algebra interface
(using PETSc as back-end by default), and then the solution function is saved to
disk. The source code for an example solver is presented in Figure 2.

Q = F i n i t e E l e m e n t ( " C G " , " t e t r a h e d r o n " , 1)

v = T e s t F u n c t i o n ( Q ) # t e s t ba s i s func t i on

u = T r i a l F u n c t i o n ( Q ) # t r i a l ba s i s func t i on

f = C o e f f i c i e n t ( Q ) # funct i on

# B i l i n e a r and l i n e a r forms

a = d o t ( g r a d ( v ) , g r a d ( u ))∗ d x

L = v∗ f∗ d x

// D e f i n e m e s h , B C s a n d c o e f f i c i e n t s

P o i s s o n B o u n d a r y b o u n d a r y ;

P o i s s o n B o u n d a r y V a l u e u 0 ( m e s h ) ;

S o u r c e F u n c t i o n f ( m e s h ) ;

D i r i c h l e t B C b c ( u0 , m e s h , b o u n d a r y ) ;

// D e f i n e P D E

P o i s s o n B i l i n e a r F o r m a ;

P o i s s o n L i n e a r F o r m L ( f ) ;

L i n e a r P D E p d e ( a , L , m e s h , b c ) ;

// S o l v e P D E

F u n c t i o n u ;

p d e . s o l v e ( u ) ;

// S a v e s o l u t i o n t o f i l e

F i l e f i l e ( ‘ ‘ p o i s s o n . p v d ’ ’ ) ;

f i l e << u ;

Fig. 2: Poisson solver in FEniCS-HPC with the weak form in the UFL language
(left) and the solver in C++ using DOLFIN-HPC (right).
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The incompressible Navier-Stokes equations We formulate the General
Galerkin (G2) method for incompressible Navier-Stokes (1) in UFL by a direct
input of the weak residual. We can automatically derive the Jacobian in a quasi-
Newton fixed-point formulation and also automatically linearize and generate the
adjoint problem needed for adaptive error control. These examples are presented
in Figure 3

V = V e c t o r E l e m e n t ( " C G " , " t e t r a h e d r o n " , 1)

Q = F i n i t e E l e m e n t ( " C G " , " t e t r a h e d r o n " , 1)

v = T e s t F u n c t i o n ( V ) ; q = T e s t F u n c t i o n ( Q )

u _ = T r i a l F u n c t i o n ( V ) ; p _ = T r i a l F u n c t i o n ( Q )

u = C o e f f i c i e n t ( V ) ; p = C o e f f i c i e n t ( Q )

u 0 = C o e f f i c i e n t ( V ) ; u m = 0.5∗ ( u + u 0 )

# Momentum and cont inu i ty weak r e s i d u a l s

r _ m = ( i n n e r ( u − u0 , v )/ k + \
( ( n u ∗ i n n e r ( g r a d ( u m ) , g r a d ( v ) ) + \
i n n e r ( g r a d ( p ) + g r a d ( u m )∗ um , v ) ) ) )∗ d x + L S _ u ∗ d x

r _ c = i n n e r ( d i v ( u ) , q ))∗ d x + L S _ p ∗ d x

# Newton ’ s method Ju i+1 = Ju i − F( u i )

a = d e r i v a t i v e ( r _ m , u , u _ )

L = a c t i o n ( a , u ) − r _ m

# Adjoint problem ( s t a t i ona ry part ) f o r r m

a _ a d j o i n t = a d j o i n t ( d e r i v a t i v e ( r _ m − u / k∗ dx , u ) )

L _ a d j o i n t _ c = d e r i v a t i v e ( a c t i o n ( r _ c , p ) , u , v )

L _ a d j o i n t = i n n e r ( p s i _ m , v )∗ d x − L _ a d j o i n t _ c

Fig. 3: Example of weak forms in UFL notation for the cG(1)cG(1) method for
incompressible Navier-Stokes (left) together with the adjoint problem (right).

3 Parallelization strategy and performance

The parallelization is based on a fully distributed mesh approach, where everything
from preprocessing, assembly of linear systems, postprocessing and refinement
is performed in parallel, without representing the entire problem or any pre-
/postprocessing step on one a single core

Inital data distribution is defined by the graph partitioning of the correspond-
ing dual graph of the mesh. Each core is assigned a set of whole elements and
the vertex overlap between cores is represented as ghosted entities.

3.1 Parallel assembly

The assembling of the global matrix is performed in a straightforward fashion.
Each core computes the local matrix of the local elements and add them to the
global matrix. Since we assign whole elements to each core, we can minimize
data dependency during assembly. Furthermore, we renumber all the degrees
of freedom such that a minimal amount of communication is required when
modifying entries in the sparse matrix.
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3.2 Solution of discrete system

The FEM discretization generates a non-linear algebraic equation system to be
solved for each time step. In Unicorn We solve this by iterating between the
velocity and pressure equations by a Picard or quasi-Newton iteration [6].

Each iteration in turn generates a linear system to be solved. We use simple
Krylov solvers and preconditioners which scale well to many coress, typically
BiCGSTAB with a block-Jacobi preconditioner, where each block is solved with
ILU(0).

3.3 Mesh refinement

Local mesh refinement is based around a parallelization of the well known recursive
longest edge bisection method [15]. The parallelization splits up the refinement
into two phases. First a local serial refinement phase bisects all elements marked
for refinement on each core (concurrently) leaving several hanging nodes on the
shared interface between cores. The second phase propagates these hanging nodes
onto adjacent cores.

The algorithm iterates between local refinement and global propagation until
all cores are free of hanging nodes. For an efficent implementation, one has to
detect when all cores are idling at the same time. Our implementetaion uses
a fully distributed termination detection scheme, which includes termination
detection in the global propagation step by using recusive doubling or hypercube
exchange type communication patterns [10]. Also, the termination detection
algorithm does not have a central point of control, hence no bottlenecks, less
message contention, and no problems with load imbalance.

Dynamic load balancing In order to sustain good load balance across several
adaptive iterations, dynamic load balancing is needed. DOLFIN-HPC is equipped
with a scratch and remap type load balancer, based on the widely used PLUM
scheme [14], where the new partitions are assigned in an optimal way by solving
the maximally weighted bipartite graph problem. We have improved the scheme
such that it scales linearly to thousands of cores [10, 8].

Furthermore, we have extended the load balancer with an a priori workload
estimation. With a dry run of the refinement algorithm, we add weights to a
dual graph of the mesh, corresponding to the workload after refinement. Finally,
we repartition the unrefined mesh according to the weighted dual graph and
redistribute the new partitions before the refinement.

4 Strong scalability

To be able to take advantage of available supercomputers today the entire solver
in FEniCS-HPC needs to demonstrate good strong scaling to at least several
thousands of cores. For planned “exascale” systems with many million cores,
strong scalability has to be attained for at least hundreds of thousands of cores.
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In this section we analyze scaling results using the PETSc parallel linear
algebra backend based on pure MPI and the JANPACK backend based on PGAS.

In Figure 4 we present strong scalability results with the PETSc pure MPI
backend for the full G2 method for turbulent incompressible Navier-Stokes (1)
(assemble linear systems and solve momentum and continuity) in 3D on a mesh
with 147M vertices on the Hornet Cray XC40 computer. We observe near-optimal
scaling to ca. 4.6 kcores for all the main algorithms (assembly and linear solves).
Going from 4.6 kcores to 9.2 kcores we start to see a degradation in the scaling
with a speedup of ca. 0.7, and from 9.2 kcores to 18.4 kcores the speedup is 0.5.
It’s clear that it’s mainly the assembly that shows degraded scaling.

In Figure 5 we present results for assembling four different equations using
the JANPACK backend, where FEniCS-HPC is running in a hybrid MPI+PGAS
mode. We observe that for large number of cores, the low latency one-sided
communication of PGAS languages in combination with our new sparse matrix
format [9] greatly improves the scalability.

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
log10(num_cores)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

lo
g1

0(
tim

e)

Unicorn 3D ICNS 147M vertices
tot
tot ideal
asm
asm ideal
momsolve
consolve

Fig. 4: Strong scalability test for the full
G2 method for incompressible turbulent
Navier-Stokes (assemble linear systems
and solve momentum and continuity) in
3D on a Cray XC40.

5 Unicorn simulation of a full aircraft

In the Unicorn component we implement the full G2 method and fix the weak
residual to the cG(1)cG(1) stabilized space-time method for incompressible
Navier-Stokes (or a general stress for FSI)

In a cG(1)cG(1) method [7] we seek an approximate space-time solution
Û = (U,P ) which is continuous piecewise linear in space and time (equivalent
to the implicit Crank-Nicolson method). With I a time interval with subinter-
vals In = (tn−1, tn), Wn a standard spatial finite element space of continuous
piecewise linear functions, and Wn

0 the functions in Wn which are zero on the
boundary Γ , the cG(1)cG(1) method for constant density incompressible flow
with homogeneous Dirichlet boundary conditions for the velocity takes the form:
for n = 1, ..., N , find (Un, Pn) ≡ (U(tn), P (tn)) with Un ∈ V n0 ≡ [Wn

0 ]3 and
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Fig. 5: Sparse matrix assembly timings for four different equations on a Cray
XC40.

Pn ∈Wn, such that

r((U,P ), (v, q)) = ((Un − Un−1)k−1n + (Ūn · ∇)Ūn, v) + (2νε(Ūn), ε(v))

− (P,∇ · v) + (∇ · Ūn, q) + LS = 0, , ∀v̂ = (v, q) ∈ V n0 ×Wn (1)

where Ūn = 1/2(Un + Un−1) is piecewise constant in time over In and LS a
least-squares stabilizing term described in [7].

We formulate a general adjoint-based method for adaptive error control based
on the following error representation and adjoint weak bilinear and linear forms
with the error ê = û − Û , adjoint solution φ̂ and the hat signifying the full
velocity-pressure vector Û = (U,P ), with rG = r − LS:

(ê, ψ) = r′(ê, φ̂) = rG(Û ; φ̂) aadjoint(v, φ̂) = r′(v, φ̂) Ladjoint(v) = (v, ψ) (2)

We have used our adaptive finite element methodology for turbulent flow and
FEniCS-HPC software to solve the incompressible Navier-Stokes equations of
the flow past a full high-lift aircraft model (DLR-F11) with complex geometry at
realistic Reynolds number for take-off and landing. This work is an extension of
our contributed simulation results to the 2nd AIAA CFD High-Lift Prediction
Workshop (HiLiftPW-2), in San Diego, California, in 2013 [5].

In the following results we focus on the angle of attack α = 18.5◦. To quantify
mesh-convergence we plot the coefficients and their relative error compared to
the experimental values (serving as the reference) versus the number of vertices
in the meshes, and plot meshes and volume renderings of quantities related to
the adaptivity in Figure 6.

We see that our adaptive computational results come very close to the
experimental results on the finest mesh, with a relative error under 1% for cl and
cd. For other angles we observe similar results presented in [5].
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Fig. 6: Plots for the aircraft simulation at α = 18.5◦. Lift coefficient, cl, and
drag coefficient, cd, vs. angle of attack, α, for the different meshes from the
iterative adaptive method (left). Slice aligned with the angle of attack showing the
tetrahedra of the starting mesh versus the finest adaptive mesh (top right). Volume
rendering of the velocity residual R1(U,P ) and adjoint velocity ϕ magnitude
(bottom right).

6 Summary

We have given an overview of the general FEniCS-HPC software framework for
automated solution of PDE, taking the weak form as input in near-mathematical
notation, with automated discretization and adaptive error control. On the
Hornet Cray XC40 supercomputer we demonstrate new optimal strong scaling
results for the whole adaptive framework applied to turbulent flow on massively
parallel architectures down to 25000 vertices per core with ca. 5000 cores with
the MPI-based PETSc backend and for assembly down to 500 vertices per core
with ca. 20000 cores with the PGAS-based JANPACK backend.

Using the Unicorn component in FEniCS-HPC we have simulated the aero-
dynamics of a full DLR-F11 aircraft in connection with the HiLift-PW2 bench-
marking workshop. We find that the simulation results compare very well with
experimental data; moreover, we show mesh-convergence by the adaptive method,
while using a low number of spatial degrees of freedom.
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