37 research outputs found

    Probing Single Vacancies in Black Phosphorus at the Atomic Level

    Get PDF
    Utilizing a combination of low-temperature scanning tunneling microscopy/spectroscopy (STM/STS) and electronic structure calculations, we characterize the structural and electronic properties of single atomic vacancies within several monolayers of the surface of black phosphorus. We illustrate, with experimental analysis and tight-binding calculations, that we can depth profile these vacancies and assign them to specific sublattices within the unit cell. Measurements reveal that the single vacancies exhibit strongly anisotropic and highly delocalized charge density, laterally extended up to 20 atomic unit cells. The vacancies are then studied with STS, which reveals in-gap resonance states near the valence band edge and a strong p-doping of the bulk black phosphorus crystal. Finally, quasiparticle interference generated near these vacancies enables the direct visualization of the anisotropic band structure of black phosphorus.Comment: Nano Letters (2017

    An orbitally derived single-atom magnetic memory

    Get PDF
    A single magnetic atom on a surface epitomizes the scaling limit for magnetic information storage. Indeed, recent work has shown that individual atomic spins can exhibit magnetic remanence and be read out with spin-based methods, demonstrating the fundamental requirements for magnetic memory. However, atomic spin memory has been only realized on thin insulating surfaces to date, removing potential tunability via electronic gating or distance-dependent exchange-driven magnetic coupling. Here, we show a novel mechanism for single-atom magnetic information storage based on bistability in the orbital population, or so-called valency, of an individual Co atom on semiconducting black phosphorus (BP). Distance-dependent screening from the BP surface stabilizes the two distinct valencies and enables us to electronically manipulate the relative orbital population, total magnetic moment and spatial charge density of an individual magnetic atom without a spin-dependent readout mechanism. Furthermore, we show that the strongly anisotropic wavefunction can be used to locally tailor the switching dynamics between the two valencies. This orbital memory derives stability from the energetic barrier to atomic relaxation and demonstrates the potential for high-temperature single-atom information storage

    Direct oriented growth of armchair graphene nanoribbons on germanium

    Get PDF
    Graphene can be transformed from a semimetal into a semiconductor if it is confined into nanoribbons narrower than 10nm with controlled crystallographic orientation and well-defined armchair edges. However, the scalable synthesis of nanoribbons with this precision directly on insulating or semiconducting substrates has not been possible. Here we demonstrate the synthesis of graphene nanoribbons on Ge(001) via chemical vapour deposition. The nanoribbons are self-aligning 3 degrees from the Ge < 110 > directions, are self-defining with predominantly smooth armchair edges, and have tunable width to <10 nm and aspect ratio to >70. In order to realize highly anisotropic ribbons, it is critical to operate in a regime in which the growth rate in the width direction is especially slow, <5 nm h(-1). This directional and anisotropic growth enables nanoribbon fabrication directly on conventional semiconductor wafer platforms and, therefore, promises to allow the integration of nanoribbons into future hybrid integrated circuits

    Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and surface-enhanced Raman scattering Multifunctional porous silicon nanopillar arrays: antireflection, superhydrophobicity, photoluminescence, and s

    No full text
    Abstract We have fabricated porous silicon nanopillar arrays over large areas with a rapid, simple, and low-cost technique. The porous silicon nanopillars show unique longitudinal features along their entire length and have porosity with dimensions on the single-nanometer scale. Both Raman spectroscopy and photoluminescence data were used to determine the nanocrystallite size to be <3 nm. The porous silicon nanopillar arrays also maintained excellent ensemble properties, reducing reflection nearly fivefold from planar silicon in the visible range without any optimization, and approaching superhydrophobic behavior with increasing aspect ratio, demonstrating contact angles up to 138 • . Finally, the porous silicon nanopillar arrays were made into sensitive surface-enhanced Raman scattering (SERS) substrates by depositing metal onto the pillars. The SERS performance of the substrates was demonstrated using a chemical dye Rhodamine 6G. With their multitude of properties (i.e., antireflection, superhydrophobicity, photoluminescence, and sensitive SERS), the porous silicon nanopillar arrays described here can be valuable in applications such as solar harvesting, electrochemical cells, self-cleaning devices, and dynamic biological monitoring

    Moire-induced electronic structure modifications in monolayer V2S3 on Au(111)

    Get PDF
    Contains fulltext : 232260.pdf (Publisher’s version ) (Open Access
    corecore