130 research outputs found

    Employment Protection Laws and Corporate Cash Holdings

    Get PDF
    We study how employment protection laws (EPLs) affect corporate cash-holding decision. By exploiting within-country changes in EPLs across 20 OECD countries as a source of variation in labor adjustment costs, we show that following an increase in the stringency of EPLs, firms’ cash holdings increase significantly. This relationship is stronger for firms with high labor turnover, no multinational presence, or financial constraints, indicating that labor adjustment cost raising distress risk is the mechanism in play. Cash buffers created by firms faced with stricter EPLs help them mitigate the under investment problem in subsequent episodes of industry-wide distress. Consistent with this precautionary motive, the market’s valuation of excess cash is positively associated with the EPL strictness. We further demonstrate that the response of cash policy to changes in EPLs is distinct from that of debt policy or investment policy. Our evidence highlights the role of interaction between labor market and financial frictions in determining the level and the value of corporate cash

    Particle Capture Devices and Methods of Use Thereof

    Get PDF
    The present invention provides a device and methods of use thereof in microscale particle capturing and particle pairing. This invention provides particle patterning device, which mechanically traps individual particles within first chambers of capture units, transfer the particles to second chambers of opposing capture units, and traps a second type of particle in the same second chamber. The device and methods allow for high yield assaying of trapped cells, high yield fusion of trapped, paired cells, for controlled binding of particles to cells and for specific chemical reactions between particle interfaces and particle contents. The device and method provide means of identification of the particle population and a facile route to particle collection

    Do institutional investors process and act on information?  : Evidence from M&A targets

    Get PDF
    We document important links between targets’ institutional ownership and takeover-bid outcomes. Firms’ institutional ownership increases the likelihood of receiving stock-for-stock bids. The impact becomes stronger when information asymmetries are higher, whereas we find little support for alternative channels, such as bidder misvaluation or target-side adverse selection. The information channel is further buttressed in our analyses of institutions’ share-retention decisions, targets’ demand for top-tier advisors, collar provisions, and targets’ share of expected synergies. Our findings suggest that institutions’ information advantage facilitates rational payment design and targets’ bargaining power gains, alleviating deadweight losses associated with stock-for-stock offers. (JEL G23, G32, G34

    RagA, but Not RagB, Is Essential for Embryonic Development and Adult Mice

    Get PDF
    The mechanistic target of rapamycin complex 1 (mTORC1) integrates cues from growth factors and nutrients to control metabolism. In contrast to the growth factor input, genetic disruption of nutrient-dependent activation of mTORC1 in mammals remains unexplored. We engineered mice lacking RagA and RagB genes, which encode the GTPases responsible for mTORC1 activation by nutrients. RagB has limited expression, and its loss shows no effects on mammalian physiology. RagA deficiency leads to E10.5 embryonic death, loss of mTORC1 activity, and severe growth defects. Primary cells derived from these mice exhibit no regulation of mTORC1 by nutrients and maintain high sensitivity to growth factors. Deletion of RagA in adult mice is lethal. Upon RagA loss, a myeloid population expands in peripheral tissues. RagA-specific deletion in liver increases cellular responses to growth factors. These results show the essentiality of nutrient sensing for mTORC1 activity in mice and its suppression of PI3K/Akt signaling.United States. National Institutes of Health (R01 CA129105)United States. National Institutes of Health (R01 CA103866)United States. National Institutes of Health (R01 AI047389)United States. National Institutes of Health (R21 AG042876)American Federation for Aging ResearchStarr FoundationDavid H. Koch Institute for Integrative Cancer Research at MIT. Frontier Research ProgramEllison Medical FoundationUnited States. National Institutes of Health (AG041765)National Cancer Institute (U.S.) (F31CA167872

    Antigen-specific B-cell receptor sensitizes B cells to infection by influenza virus

    Get PDF
    Influenza A virus-specific B lymphocytes and the antibodies they produce protect against infection. However, the outcome of interactions between an influenza haemagglutinin-specific B cell via its receptor (BCR) and virus is unclear. Through somatic cell nuclear transfer we generated mice that harbour B cells with a BCR specific for the haemagglutinin of influenza A/WSN/33 virus (FluBI mice). Their B cells secrete an immunoglobulin gamma 2b that neutralizes infectious virus. Whereas B cells from FluBI and control mice bind equivalent amounts of virus through interaction of haemagglutinin with surface-disposed sialic acids, the A/WSN/33 virus infects only the haemagglutinin-specific B cells. Mere binding of virus is not sufficient for infection of B cells: this requires interactions of the BCR with haemagglutinin, causing both disruption of antibody secretion and FluBI B-cell death within 18 h. In mice infected with A/WSN/33, lung-resident FluBI B cells are infected by the virus, thus delaying the onset of protective antibody release into the lungs, whereas FluBI cells in the draining lymph node are not infected and proliferate. We propose that influenza targets and kills influenza-specific B cells in the lung, thus allowing the virus to gain purchase before the initiation of an effective adaptive response.National Institutes of Health (U.S.

    A Latent Pro-survival Function for the Mir-290-295 Cluster in Mouse Embryonic Stem Cells

    Get PDF
    MicroRNAs (miRNAs) post-transcriptionally regulate the expression of thousands of distinct mRNAs. While some regulatory interactions help to maintain basal cellular functions, others are likely relevant in more specific settings, such as response to stress. Here we describe such a role for the mir-290-295 cluster, the dominant miRNA cluster in mouse embryonic stem cells (mESCs). Examination of a target list generated from bioinformatic prediction, as well as expression data following miRNA loss, revealed strong enrichment for apoptotic regulators, two of which we validated directly: Caspase 2, the most highly conserved mammalian caspase, and Ei24, a p53 transcriptional target. Consistent with these predictions, mESCs lacking miRNAs were more likely to initiate apoptosis following genotoxic exposure to gamma irradiation or doxorubicin. Knockdown of either candidate partially rescued this pro-apoptotic phenotype, as did transfection of members of the mir-290-295 cluster. These findings were recapitulated in a specific mir-290-295 deletion line, confirming that they reflect miRNA functions at physiological levels. In contrast to the basal regulatory roles previously identified, the pro-survival phenotype shown here may be most relevant to stressful gestations, where pro-oxidant metabolic states induce DNA damage. Similarly, this cluster may mediate chemotherapeutic resistance in a neoplastic context, making it a useful clinical target.National Institutes of Health (U.S.) (NIH grant RO1-GM34277)National Cancer Institute (U.S.) (NCI grant PO1-CA42063)National Cancer Institute (U.S.) (NCI Cancer Center Support (core) grant P30-CA14051

    Subcellular Antigen Location Influences T-Cell Activation during Acute Infection with Toxoplasma gondii

    Get PDF
    Effective control of the intracellular protozoan parasite Toxoplasma gondii depends on the activation of antigen-specific CD8+ T-cells that manage acute disease and prevent recrudescence during chronic infection. T-cell activation in turn, requires presentation of parasite antigens by MHC-I molecules on the surface of antigen presenting cells. CD8+ T-cell epitopes have been defined for several T. gondii proteins, but it is unclear how these antigens enter into the presentation pathway. We have exploited the well-characterized model antigen ovalbumin (OVA) to investigate the ability of parasite proteins to enter the MHC-I presentation pathway, by engineering recombinant expression in various organelles. CD8+ T-cell activation was assayed using ‘B3Z’ reporter cells in vitro, or adoptively-transferred OVA-specific ‘OT-I’ CD8+ T-cells in vivo. As expected, OVA secreted into the parasitophorous vacuole strongly stimulated antigen-presenting cells. Lower levels of activation were observed using glycophosphatidyl inositol (GPI) anchored OVA associated with (or shed from) the parasite surface. Little CD8+ T-cell activation was detected using parasites expressing intracellular OVA in the cytosol, mitochondrion, or inner membrane complex (IMC). These results indicate that effective presentation of parasite proteins to CD8+ T-cells is a consequence of active protein secretion by T. gondii and escape from the parasitophorous vacuole, rather than degradation of phagocytosed parasites or parasite products

    Enzymatic Blockade of the Ubiquitin-Proteasome Pathway

    Get PDF
    Ubiquitin-dependent processes control much of cellular physiology. We show that expression of a highly active, Epstein-Barr virus-derived deubiquitylating enzyme (EBV-DUB) blocks proteasomal degradation of cytosolic and ER-derived proteins by preemptive removal of ubiquitin from proteasome substrates, a treatment less toxic than the use of proteasome inhibitors. Recognition of misfolded proteins in the ER lumen, their dislocation to the cytosol, and degradation are usually tightly coupled but can be uncoupled by the EBV-DUB: a misfolded glycoprotein that originates in the ER accumulates in association with cytosolic chaperones as a deglycosylated intermediate. Our data underscore the necessity of a DUB activity for completion of the dislocation reaction and provide a new means of inhibition of proteasomal proteolysis with reduced cytotoxicity.National Institutes of Health (U.S.)EMBO (long term Fellowship 2008-379)Boehringer Ingelheim Fond

    Intelligent control and security of fog resources in healthcare systems via a cognitive fog model

    Get PDF
    There have been significant advances in the field of Internet of Things (IoT) recently, which have not always considered security or data security concerns: A high degree of security is required when considering the sharing of medical data over networks. In most IoT-based systems, especially those within smart-homes and smart-cities, there is a bridging point (fog computing) between a sensor network and the Internet which often just performs basic functions such as translating between the protocols used in the Internet and sensor networks, as well as small amounts of data processing. The fog nodes can have useful knowledge and potential for constructive security and control over both the sensor network and the data transmitted over the Internet. Smart healthcare services utilise such networks of IoT systems. It is therefore vital that medical data emanating from IoT systems is highly secure, to prevent fraudulent use, whilst maintaining quality of service providing assured, verified and complete data. In this paper, we examine the development of a Cognitive Fog (CF) model, for secure, smart healthcare services, that is able to make decisions such as opting-in and opting-out from running processes and invoking new processes when required, and providing security for the operational processes within the fog system. Overall, the proposed ensemble security model performed better in terms of Accuracy Rate, Detection Rate, and a lower False Positive Rate (standard intrusion detection measurements) than three base classifiers (K-NN, DBSCAN and DT) using a standard security dataset (NSL-KDD)
    • …
    corecore