249 research outputs found
Temporal and spectral characteristics of solar flare hard X-ray emission
Solar Maximum Mission observations of three flares that impose stringent constraints on physical models of the hard X-ray production during the impulsive phase are presented. Hard X-ray imaging observations of the flares on 1980 November 5 at 22:33 UT show two patches in the 16 to 30 keV images that are separated by 70,000 km and that brighten simultaneously to within 5 s. Observations to O V from one of the footprints show simultaneity of the brightening in this transition zone line and in the total hard X-ray flux to within a second or two. These results suggest but do not require the existence of electron beams in this flare. The rapid fluctuations of the hard X-ray flux within some flares on the time scales of 1 s also provide evidence for electron beams and limits on the time scale of the energy release mechanism. Observations of a flare on 1980 June 6 at 22:34 UT show variations in the 28 keV X-ray counting rate from one 20 ms interval to the next over a period of 10 s. The hard X-ray spectral variations measured with 128 ms time resolution for one 0.5 s spike during this flare are consistent with the predictions of thick-target non-thermal beam model
Microwave and hard X-ray observations of a solar flare with a time resolution of better than 100 MS
Simultaneous microwave and X-ray observations are presented for a solar flare detected on 1980 May 8 starting at 1937 UT. The X-ray observations were made with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission and covered the energy range from 28-490 keV with a time resolution of 10 ms. The microwave observations were made with the 5 and 45 foot antennas at the Itapetinga Radio Observatory at frequencies of 7 and 22 GHz, with time resolutions of 100 ms and 1 ms respectively. Detailed correlation analysis of the different time profiles of the event show that the major impulsive in the X-ray flux preceded the corresponding microwave peaks at 22 GHz by about 240ms. For this particular burst the 22 GHz peaks preceded the 7 GHz by about 1.5s. Observed delays of the microwave peaks are too large for a simple electron beam model but they can be reconciled with the speeds of shock waves in a thermal model
The hard X-ray burst spectrometer event listing 1980, 1981 and 1982
A comprehensive reference for the hard X-ray bursts detected with the Hard X-Ray Burst Spectrometer on the Solar Maximum Mission for the time of launch on February 14, 1980 to March 1983 is provided. Over 6300 X-ray events were detected in the energy range from 30 to approx 500 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
The hard X-ray burst spectrometer event listing 1980-1987
This event listing is a comprehensive reference for the Hard X-ray bursts detected with the Hard X-ray Burst Spectrometer on the Solar Maximum Mission from the time of launch 14 February 1980 to December 1987. Over 8600 X-ray events were detected in the energy range from 30 to approx. 600 keV with the vast majority being solar flares. The listing includes the start time, peak time, duration and peak rate of each event
The Fourier Imaging X-ray Spectrometer (FIXS) for the Argentinian, Scout-launched satelite de Aplicaciones Cienficas-1 (SAC-1)
The Fourier Imaging X-ray Spectrometer (FIXS) is one of four instruments on SAC-1, the Argentinian satellite being proposed for launch by NASA on a Scout rocket in 1992/3. The FIXS is designed to provide solar flare images at X-ray energies between 5 and 35 keV. Observations will be made on arcsecond size scales and subsecond time scales of the processes that modify the electron spectrum and the thermal distribution in flaring magnetic structures
Thermalisation of self-interacting solar flare fast electrons
Most theoretical descriptions of the production of solar flare bremsstrahlung
radiation assume the collision of dilute accelerated particles with a cold,
dense target plasma, neglecting interactions of the fast particles with each
other. This is inadequate for situations where collisions with this background
plasma are not completely dominant, as may be the case in, for example,
low-density coronal sources. We aim to formulate a model of a self-interacting,
entirely fast electron population in the absence of a dense background plasma,
to investigate its implications for observed bremsstrahlung spectra and the
flare energy budget. We derive approximate expressions for the time-dependent
distribution function of the fast electrons using a Fokker-Planck approach. We
use these expressions to generate synthetic bremsstrahlung X-ray spectra as
would be seen from a corresponding coronal source. We find that our model
qualitatively reproduces the observed behaviour of some flares. As the flare
progresses, the model's initial power-law spectrum is joined by a lower energy,
thermal component. The power-law component diminishes, and the growing thermal
component proceeds to dominate the total emission over timescales consistent
with flare observations. The power-law exhibits progressive spectral hardening,
as is seen in some flare coronal sources. We also find that our model requires
a factor of 7 - 10 fewer accelerated electrons than the cold, thick target
model to generate an equivalent hard X-ray flux. This model forms the basis of
a treatment of self-interactions among flare fast electrons, a process which
affords a more efficient means to produce bremsstrahlung photons and so may
reduce the efficiency requirements placed on the particle acceleration
mechanism. It also provides a useful description of the thermalisation of fast
electrons in coronal sources.Comment: 9 pages, 7 figures, accepted for Astronomy & Astrophysics; this
version clarifies arguments around Eqs. (11) and (20
Temporal Correlation of Hard X-rays and Meter/Decimeter Radio Structures in Solar Flares
We investigate the relative timing between hard X-ray (HXR) peaks and
structures in metric and decimetric radio emissions of solar flares using data
from the RHESSI and Phoenix-2 instruments. The radio events under consideration
are predominantly classified as type III bursts, decimetric pulsations and
patches. The RHESSI data are demodulated using special techniques appropriate
for a Phoenix-2 temporal resolution of 0.1s. The absolute timing accuracy of
the two instruments is found to be about 170 ms, and much better on the
average. It is found that type III radio groups often coincide with enhanced
HXR emission, but only a relatively small fraction ( 20%) of the groups
show close correlation on time scales 1s. If structures correlate, the HXRs
precede the type III emissions in a majority of cases, and by 0.690.19 s
on the average. Reversed drift type III bursts are also delayed, but
high-frequency and harmonic emission is retarded less. The decimetric
pulsations and patches (DCIM) have a larger scatter of delays, but do not have
a statistically significant sign or an average different from zero. The time
delay does not show a center-to-limb variation excluding simple propagation
effects. The delay by scattering near the source region is suggested to be the
most efficient process on the average for delaying type III radio emission
Probing the Role of Magnetic-Field Variations in NOAA AR 8038 in Producing Solar Flare and CME on 12 May 1997
We carried out a multi-wavelength study of a CME and a medium-size 1B/C1.3
flare occurring on 12 May 1997. We present the investigation of magnetic-field
variations in the NOAA Active Region 8038 which was observed on the Sun during
7--16 May 1997. Analyses of H{\alpha} filtergrams and MDI/SOHO magnetograms
revealed continual but discrete surge activity, and emergence and cancellation
of flux in this active region. The movie of these magnetograms revealed two
important results that the major opposite polarities of pre-existing region as
well as in the emerging flux region (EFR) were approaching towards each other
and moving magnetic features (MMF) were ejecting out from the major north
polarity at a quasi-periodicity of about ten hrs during 10--13 May 1997. These
activities were probably caused by the magnetic reconnection in the lower
atmosphere driven by photospheric convergence motions, which were evident in
magnetograms. The magnetic field variations such as flux, gradient, and sunspot
rotation revealed that free energy was slowly being stored in the corona. The
slow low-layer magnetic reconnection may be responsible for this storage and
the formation of a sigmoidal core field or a flux rope leading to the eventual
eruption. The occurrence of EUV brightenings in the sigmoidal core field prior
to the rise of a flux rope suggests that the eruption was triggered by the
inner tether-cutting reconnection, but not the external breakout reconnection.
An impulsive acceleration revealed from fast separation of the H{\alpha}
ribbons of the first 150 seconds suggests the CME accelerated in the inner
corona, which is consistent with the temporal profile of the reconnection
electric field. In conclusion, we propose a qualitative model in view of
framework of a solar eruption involving, mass ejections, filament eruption,
CME, and subsequent flare.Comment: 8 figures, accepted for publication in Solar Physic
Local re-acceleration and a modified thick target model of solar flare electrons
The collisional thick target model (CTTM) of solar hard X-ray (HXR) bursts
has become an almost 'Standard Model' of flare impulsive phase energy transport
and radiation. However, it faces various problems in the light of recent data,
particularly the high electron beam density and anisotropy it involves.} {We
consider how photon yield per electron can be increased, and hence fast
electron beam intensity requirements reduced, by local re-acceleration of fast
electrons throughout the HXR source itself, after injection.} {We show
parametrically that, if net re-acceleration rates due to e.g. waves or local
current sheet electric () fields are a significant fraction of
collisional loss rates, electron lifetimes, and hence the net radiative HXR
output per electron can be substantially increased over the CTTM values. In
this local re-acceleration thick target model (LRTTM) fast electron number
requirements and anisotropy are thus reduced. One specific possible scenario
involving such re-acceleration is discussed, viz, a current sheet cascade (CSC)
in a randomly stressed magnetic loop.} {Combined MHD and test particle
simulations show that local fields in CSCs can efficiently
accelerate electrons in the corona and and re-accelerate them after injection
into the chromosphere. In this HXR source scenario, rapid synchronisation and
variability of impulsive footpoint emissions can still occur since primary
electron acceleration is in the high Alfv\'{e}n speed corona with fast
re-acceleration in chromospheric CSCs. It is also consistent with the
energy-dependent time-of-flight delays in HXR features.Comment: 8 pages, 2 figure
- …