103 research outputs found

    Impact of oxygen on gallium doped germanium

    Get PDF
    Germanium (Ge) has advantageous materials properties and is considered as a mainstream material for nanoelectronic applications. Understanding dopant–defect interactions is important to form well-defined doped regions for devices. Gallium (Ga) is a key p-type dopant in Ge. In the present density functional theory study, we concentrate on the structures and electronic structures of Ga doped Ge in the presence of Ge vacancies and oxygen. We provide information on the defect structures and charge transfer between the doped Ga atom and the nearest neighbor Ge atom. The calculations show that the presence of Ga on the Ge site facilitates the formation of nearest neighbor Ge vacancies at 0.75 eV. The formation of interstitial oxygen is endoergic with the formation of −2 charge in both bulk Ge and Ga substituted Ge although the substitution of Ga has slightly less impact on the oxygen interstitial formation

    Reduction of neurovascular damage resulting from microelectrode insertion into the cerebral cortex using

    Full text link
    Penetrating neural probe technologies allow investigators to record electrical signals in the brain. The implantation of probes causes acute tissue damage, partially due to vasculature disruption during probe implantation. This trauma can cause abnormal electrophysiological responses and temporary increases in neurotransmitter levels, and perpetuate chronic immune responses. A significant challenge for investigators is to examine neurovascular features below the surface of the brain in vivo. The objective of this study was to investigate localized bleeding resulting from inserting microscale neural probes into the cortex using two-photon microscopy (TPM) and to explore an approach to minimize blood vessel disruption through insertion methods and probe design. 3D TPM images of cortical neurovasculature were obtained from mice and used to select preferred insertion positions for probe insertion to reduce neurovasculature damage. There was an 82.8 ± 14.3% reduction in neurovascular damage for probes inserted in regions devoid of major (>5 µm) sub-surface vessels. Also, the deviation of surface vessels from the vector normal to the surface as a function of depth and vessel diameter was measured and characterized. 68% of the major vessels were found to deviate less than 49 µm from their surface origin up to a depth of 500 µm. Inserting probes more than 49 µm from major surface vessels can reduce the chances of severing major sub-surface neurovasculature without using TPM.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/85401/1/7_4_046011.pd

    Diffusion of boron in germanium at 800-900 °C revisited

    Get PDF
    Diffusion of boron (B) in germanium (Ge) at temperatures ranging between 800 degrees C and 900 degrees C is revisited following the most recent results reported by Uppal et al. [J. Appl. Phys. 96, 1376 (2004)] that have been obtained mainly with implantation doped samples. In this work, we determined the intrinsic B diffusivity by employing epitaxially grown alternating undoped and B-doped Ge layer structures with three different dopant concentrations of 4 x 10(17) cm(-3) 1 x 10(18) cm(-3), and 3 x 10(18) cm(-3). The diffusional broadening of B was analyzed by means of secondary ion mass spectrometry (SIMS) and numerically described to determine the diffusion coefficient. Additional SIMS analyses revealed a gradient in the oxygen (O) background concentration of the epitaxially doped Ge structure. A high O content observed in near-surface regions correlates with enhanced B diffusion. In contrast, B-doped regions with low O content showed a significantly lower B diffusivity representing the intrinsic diffusivity. The B diffusion coefficients are significantly lower compared to literature data and best described by a diffusion activation enthalpy and a pre-exponential factor of (4.09 + 0.21) eV and 265(-237)(-2256) cm(2) s (1), respectively

    Spinal Anesthesia Reduces Myocardial Ischemia-triggered Ventricular Arrhythmias by Suppressing Spinal Cord Neuronal Network Interactions in Pigs

    Get PDF
    Background: Cardiac sympathoexcitation leads to ventricular arrhythmias. Spinal anesthesia modulates sympathetic output and can be cardioprotective. However, its effect on the cardio-spinal reflexes and network interactions in the dorsal horn cardiac afferent neurons and the intermediolateral nucleus sympathetic neurons that regulate sympathetic output is not known. The authors hypothesize that spinal bupivacaine reduces cardiac neuronal firing and network interactions in the dorsal horn–dorsal horn and dorsal horn–intermediolateral nucleus that produce sympathoexcitation during myocardial ischemia, attenuating ventricular arrhythmogenesis. Methods: Extracellular neuronal signals from the dorsal horn and intermediolateral nucleus neurons were simultaneously recorded in Yorkshire pigs (n = 9) using a 64-channel high-density penetrating microarray electrode inserted at the T2 spinal cord. Dorsal horn and intermediolateral nucleus neural interactions and known markers of cardiac arrhythmogenesis were evaluated during myocardial ischemia and cardiac load–dependent perturbations with intrathecal bupivacaine. Results: Cardiac spinal neurons were identified based on their response to myocardial ischemia and cardiac load–dependent perturbations. Spinal bupivacaine did not change the basal activity of cardiac neurons in the dorsal horn or intermediolateral nucleus. After bupivacaine administration, the percentage of cardiac neurons that increased their activity in response to myocardial ischemia was decreased. Myocardial ischemia and cardiac load–dependent stress increased the short-term interactions between the dorsal horn and dorsal horn (324 to 931 correlated pairs out of 1,189 pairs, P \u3c 0.0001), and dorsal horn and intermediolateral nucleus neurons (11 to 69 correlated pairs out of 1,135 pairs, P \u3c 0.0001). Bupivacaine reduced this network response and augmentation in the interactions between dorsal horn–dorsal horn (931 to 38 correlated pairs out of 1,189 pairs, P \u3c 0.0001) and intermediolateral nucleus–dorsal horn neurons (69 to 1 correlated pairs out of 1,135 pairs, P \u3c 0.0001). Spinal bupivacaine reduced shortening of ventricular activation recovery interval and dispersion of repolarization, with decreased ventricular arrhythmogenesis during acute ischemia. Conclusions: Spinal anesthesia reduces network interactions between dorsal horn–dorsal horn and dorsal horn–intermediolateral nucleus cardiac neurons in the spinal cord during myocardial ischemia. Blocking short-term coordination between local afferent–efferent cardiac neurons in the spinal cord contributes to a decrease in cardiac sympathoexcitation and reduction of ventricular arrhythmogenesis

    Intradural Spinal Cord Stimulation: Performance Modeling of a New Modality

    Get PDF
    Introduction: Intradural spinal cord stimulation (SCS) may offer significant therapeutic benefits for those with intractable axial and extremity pain, visceral pain, spasticity, autonomic dysfunction and related disorders. A novel intradural electrical stimulation device, limited by the boundaries of the thecal sac, CSF and spinal cord was developed to test this hypothesis. In order to optimize device function, we have explored finite element modeling (FEM).Methods: COMSOL®Multiphysics Electrical Currents was used to solve for fields and currents over a geometric model of a spinal cord segment. Cathodic and anodic currents are applied to the center and tips of the T-cross component of the electrode array to shape the stimulation field and constrain charge-balanced cathodic pulses to the target area.Results: Currents from the electrode sites can move the effective stimulation zone horizontally across the cord by a linear step method, which can be diversified considerably to gain greater depth of penetration relative to standard epidural SCS. It is also possible to prevent spread of the target area with no off-target action potential.Conclusion: Finite element modeling of a T-shaped intradural spinal cord stimulator predicts significant gains in field depth and current shaping that are beyond the reach of epidural stimulators. Future studies with in vivo models will investigate how this approach should first be tested in humans

    Running away experience and psychoactive substance use among adolescents in Taiwan: multi-city street outreach survey

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This study aimed to examine: 1) the relationship between being a runaway and the time since the first absconding event and adolescent substance use; 2) whether different kinds of psychoactive substances have a different temporal relationship to the first absconding event; and 3) whether the various reasons for the first absconding event are associated with different risks of substance use.</p> <p>Methods</p> <p>Participants were drawn from the 2004-2006 nationwide outreach programs across 26 cities/towns in Taiwan. A total of 17,133 participants, age 12-18 years, who completed an anonymous questionnaire on their experience of running away and substances use and who were now living with their families, were included in the analysis.</p> <p>Results</p> <p>The lifetime risk of tobacco, alcohol, betel nut, and illegal drug/inhalant use increased steadily from adolescents who had experienced a trial runaway episode (one time lasting ≤ 1 day), to those with extended runaway experience (≥ 2 times or lasting > 1 day), when compared to those who had never ran away. Adolescents who had their first running away experience > 6 months previously had a greater risk of betel nut or illegal drug/inhalant use over the past 6-months than those with a similar experience within the last 6 months. Both alcohol and tobacco use were most frequently initiated before the first running away, whereas both betel nut and illegal drug/inhalant use were most frequently initiated after this event. When adolescents who were fleeing an unsatisfactory home life were compared to those who ran away for excitement, the risk of alcohol use was similar but the former tended to have a higher risk of tobacco, betel nut, and illegal drug/inhalant use.</p> <p>Conclusions</p> <p>More significant running away and a longer time since the first absconding experience were associated with more advanced substance involvement among adolescents now living in a family setting. Once adolescents had left home, they developed additional psychoactive substance problems, regardless of their reasons for running away. These findings have implications for caregivers, teachers, and healthcare workers when trying to prevent and/or intervening in adolescent substance use.</p

    On the way to large-scale and high-resolution brain-chip interfacing

    Get PDF
    Brain-chip-interfaces (BCHIs) are hybrid entities where chips and nerve cells establish a close physical interaction allowing the transfer of information in one or both directions. Typical examples are represented by multi-site-recording chips interfaced to cultured neurons, cultured/acute brain slices, or implanted “in vivo”. This paper provides an overview on recent achievements in our laboratory in the field of BCHIs leading to enhancement of signals transmission from nerve cells to chip or from chip to nerve cells with an emphasis on in vivo interfacing, either in terms of signal-to-noise ratio or of spatiotemporal resolution. Oxide-insulated chips featuring large-scale and high-resolution arrays of stimulation and recording elements are presented as a promising technology for high spatiotemporal resolution interfacing, as recently demonstrated by recordings obtained from hippocampal slices and brain cortex in implanted animals. Finally, we report on an automated tool for processing and analysis of acquired signals by BCHIs
    corecore