605 research outputs found

    Learned Cardinalities: Estimating Correlated Joins with Deep Learning

    Get PDF
    We describe a new deep learning approach to cardinality estimation. MSCN is a multi-set convolutional network, tailored to representing relational query plans, that employs set semantics to capture query features and true cardinalities. MSCN builds on sampling-based estimation, addressing its weaknesses when no sampled tuples qualify a predicate, and in capturing join-crossing correlations. Our evaluation of MSCN using a real-world dataset shows that deep learning significantly enhances the quality of cardinality estimation, which is the core problem in query optimization.Comment: CIDR 2019. https://github.com/andreaskipf/learnedcardinalitie

    Estimating Cardinalities with Deep Sketches

    Full text link
    We introduce Deep Sketches, which are compact models of databases that allow us to estimate the result sizes of SQL queries. Deep Sketches are powered by a new deep learning approach to cardinality estimation that can capture correlations between columns, even across tables. Our demonstration allows users to define such sketches on the TPC-H and IMDb datasets, monitor the training process, and run ad-hoc queries against trained sketches. We also estimate query cardinalities with HyPer and PostgreSQL to visualize the gains over traditional cardinality estimators.Comment: To appear in SIGMOD'1

    Enigmatic Intraplate Volcanism: A geochronological and geochemical approach for the Marie Byrd Seamounts (Antarctica) and the Christmas Island Seamount Province (Indian Ocean)

    Get PDF
    The dissertation at hand comprises three independent chapters The first chapter contains for the first time a comprehensive data set from the enigmatic Marie Byrd Seamount province including morphological, geochronological, and geochemical data, combined with additional data for the De Gerlache and Peter I Island volcanic complexes. The centerpiece of this study is the 40Ar/39Ar dating of 9 samples including the Marie Byrd Seamounts and the submarine base of Peter I Island. The second chapter is focused on a geochronological and geochemical study presenting new 40Ar/39Ar age and XRF, ICPMS element concentration data, from recovered plutonic and dyke rocks of the Pine Island Bay region, Marie Byrd Land. The third chapter encompasses a major and trace element study on diffuse intraplate volcanism of the Christmas Island Seamount Province (CHRISP), situated in the northeastern Indian Ocean

    Book Reviews

    Get PDF
    The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or S\mathcal{S}-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, N\mathcal{N}-VAE, in low dimensions on other data types.Comment: GitHub repository: http://github.com/nicola-decao/s-vae-tf, Blogpost: https://nicola-decao.github.io/s-va

    Graph Convolutional Matrix Completion

    Get PDF
    We consider matrix completion for recommender systems from the point of view of link prediction on graphs. Interaction data such as movie ratings can be represented by a bipartite user-item graph with labeled edges denoting observed ratings. Building on recent progress in deep learning on graph-structured data, we propose a graph auto-encoder framework based on differentiable message passing on the bipartite interaction graph. Our model shows competitive performance on standard collaborative filtering benchmarks. In settings where complimentary feature information or structured data such as a social network is available, our framework outperforms recent state-of-the-art methods.Comment: 9 pages, 3 figures, updated with additional experimental evaluatio
    corecore