16 research outputs found

    Eukaryotic Polyribosome Profile Analysis

    Get PDF
    Protein synthesis is a complex cellular process that is regulated at many levels. For example, global translation can be inhibited at the initiation phase or the elongation phase by a variety of cellular stresses such as amino acid starvation or growth factor withdrawal. Alternatively, translation of individual mRNAs can be regulated by mRNA localization or the presence of cognate microRNAs. Studies of protein synthesis frequently utilize polyribosome analysis to shed light on the mechanisms of translation regulation or defects in protein synthesis. In this assay, mRNA/ribosome complexes are isolated from eukaryotic cells. A sucrose density gradient separates mRNAs bound to multiple ribosomes known as polyribosomes from mRNAs bound to a single ribosome or monosome. Fractionation of the gradients allows isolation and quantification of the different ribosomal populations and their associated mRNAs or proteins. Differences in the ratio of polyribosomes to monosomes under defined conditions can be indicative of defects in either translation initiation or elongation/termination. Examination of the mRNAs present in the polyribosome fractions can reveal whether the cohort of individual mRNAs being translated changes with experimental conditions. In addition, ribosome assembly can be monitored by analysis of the small and large ribosomal subunit peaks which are also separated by the gradient. In this video, we present a method for the preparation of crude ribosomal extracts from yeast cells, separation of the extract by sucrose gradient and interpretation of the results. This procedure is readily adaptable to mammalian cells

    Interplay Between GCN2 and GCN4 Expression, Translation Elongation Factor 1 Mutations and Translational Fidelity in Yeast

    Get PDF
    Genetic screens in Saccharomyces cerevisiae have identified the roles of ribosome components, tRNAs and translation factors in translational fidelity. These screens rely on the suppression of altered start codons, nonsense codons or frameshift mutations in genes involved in amino acid or nucleotide metabolism. Many of these genes are regulated by the General Amino Acid Control (GAAC) pathway. Upon amino acid starvation, the kinase GCN2 induces the GAAC cascade via increased translation of the transcriptional activator GCN4 controlled by upstream open reading frames (uORFs). Overexpression of the GCN2 or GCN4 genes enhances the sensitivity of translation fidelity assays that utilize genes regulated by GCN4, such as the suppression of a +1 insertion by S.cerevisiae translation elongation factor 1A (eEF1A) mutants. Paromomycin and the prion [PSI+], which reduce translational fidelity, do not increase GCN4 expression to induce the suppression phenotype and in fact reduce derepression. eEF1A mutations that reduce translation, however, reduce expression of GCN4 under non-starvation conditions. These eEF1A mutants also reduce HIS4 mRNA expression. Taken together, this system improves in vivo strategies for the analysis of translational fidelity and further provides new information on the interplay among translation fidelity, altered elongation and translational control via uORFs

    Functional Interactions Between Yeast Translation Eukaryotic Elongation Factor (eEF) 1A and eEF3

    No full text
    The translation elongation machinery in fungi differs from other eukaryotes in its dependence upon eukaryotic elongation factor 3 (eEF3). eEF3 is essential in vivo and required for each cycle of the translation elongation process in vitro. Models predict eEF3 affects the delivery of cognate aminoacyl-tRNA, a function performed by eEF1A, by removing deacylated tRNA from the ribosomal Exit site. To dissect eEF3 function and its link to the A-site activities of eEF1A, we have identified a temperature-sensitive allele of the YEF3 gene. The F650S substitution, located between the two ATP binding cassettes, reduces both ribosome-dependent and intrinsic ATPase activities.In vivo this mutation increases sensitivity to aminoglycosidic drugs, causes a 50% reduction of total protein synthesis at permissive temperatures, slows run-off of polyribosomes, and reduces binding to eEF1A. Reciprocally, excess eEF3 confers synthetic slow growth, increased drug sensitivity, and reduced translation in an allele specific fashion with an E122K mutation in the GTP binding domain of eEF1A. In addition, this mutant form of eEF1A shows reduced binding of eEF3. Thus, optimal in vivointeractions between eEF3 and eEF1A are critical for protein synthesis

    Interplay between GCN2 and GCN4 expression,

    No full text
    translation elongation factor 1 mutations and translational fidelity in yeas

    Medical Student Research Exposure Via a Series of Modular Research Programs

    No full text
    Background The falling percentage of doctors of medicine applying for National Institute of Health-funded research grants is 1 indicator that physician-scientists are a disappearing breed. This is occurring at a time when increased translational, disease-oriented, patient-oriented, and clinical research are national goals. One of the keys to providing sufficient numbers of physician-scientists to support this goal is the active targeting of medical students. We hypothesize that an improved research program infrastructure and responsiveness to changing student needs will increase student participation in research-oriented electives. Methods We have developed a student research program consisting of 2 Students Interested in Research noncredit electives (lecture and laboratory based), summer fellowships, support for year-out fellowships, and a Distinction in Research program that spans undergraduate medical education. Student participation and short-term research outcomes from fall 2004 through spring 2008 are analyzed to examine program efficacy. Results Students involved in the early parts of the program initially experienced higher application and success rates for summer funding opportunities, but as the program has matured, these rates have fallen in line with the class average. Independently, students participating in later portions of the program increasingly submit or publish a first author paper and have taken a year off for research during medical school. Overlap of participation in the programs is generally smaller than expected. Conclusion Although structured programs can provide step-wise research experiences of increasing intensity, students may not experience a training pipeline in which each stage relies on those before and after, and instead may sample an a la carte selection of research-based enrichment opportunities

    Evidence That Eukaryotic Translation Elongation Factor 1A (eEF1A) Binds the Gcn2 Protein C Terminus and Inhibits Gcn2 Activity

    No full text
    The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His6-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His6-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis

    Evidence That Eukaryotic Translation Elongation Factor 1A (eEF1A) Binds the Gcn2 Protein C Terminus and Inhibits Gcn2 Activity

    No full text
    The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. the ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. the purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2 Delta cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2 alpha, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.National Institutes of HealthFundacao de Apoio a Pesquisa no Estado de São PauloMarsden Fund CouncilMassey UniversityRoyal Society of New ZealandMassey Univ, Inst Nat Sci, N Shore Mail Ctr, Albany 0745, New ZealandNICHD, Lab Gene Regulat & Dev, NIH, Bethesda, MD 20892 USAUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilUniv Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Mol Genet Microbiol & Immunol, Piscataway, NJ 08854 USAUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, BR-04023062 São Paulo, BrazilRoyal Society of New Zealand: MAU0607: RO1 GM57483Web of Scienc

    Translation Elongation Factor 1A is Essential for Regulation of the Actin Cytoskeleton and Cell Morphology

    No full text
    The binding of eukaryotic translation elongation factor 1A (eEF1A) to actin is a noncanonical function that may link two distinct cellular processes, cytoskeleton organization and gene expression. Using the yeast Saccharomyces cerevisiae, we have established an in vivo assay that directly identifies specific regions and residues of eEF1A responsible for actin interactions and bundling. Using a unique genetic screen, we isolated a series of eEF1A mutants with reduced actin bundling activity. These mutations alter actin cytoskeleton organization but not translation, indicating that these are separate functions of eEF1A. This demonstrates for the first time a direct consequence of eEF1A on cytoskeletal organization in vivo and the physiological significance of this interaction
    corecore