6 research outputs found

    Determination of plutonium in seawater using co-precipitation and inductively coupled plasma mass spectrometry with ultrasonic nebulisation1

    Get PDF
    A flow injection–inductively coupled plasma–mass spectrometric (FI–ICP–MS) procedure, utilising ultrasonic nebulisation with membrane desolvation (USN/MD), has been developed for the determination of plutonium (Pu) in seawater at fg l−1 concentration levels. Seawater samples (1 l), after filtration, were subjected to co-precipitation with NdF3, followed by ion exchange to enrich Pu and to reject seawater matrix ions and co-existing uranium. The seawater concentrate (1.0 ml) was then analysed by FI–ICP–MS. The limit of detection for in seawater based on an enrichment factor of 1000 was 5 fg l−1, and precision at the 0.80 pg l−1 level was 12% RSD. Accuracy was verified via recovery experiments, and by comparing survey data for the Irish Sea with that derived by standard methodology based on co-precipitation and α-spectrometry. Concentrations for dissolved in the Irish Sea were in the range of 0.267–0.941 pg l−1 (0.614–2.164 mBq l−1) and 0.051–0.196 pg l−1 (0.428–1.646 mBq l−1), respectively

    A Review of the Tools Used for Marine Monitoring in the UK: Combining Historic and Contemporary Methods with Modeling and Socioeconomics to Fulfill Legislative Needs and Scientific Ambitions

    Get PDF
    Marine environmental monitoring is undertaken to provide evidence that environmental management targets are being met. Moreover, monitoring also provides context to marine science and over the last century has allowed development of a critical scientific understanding of the marine environment and the impacts that humans are having on it. The seas around the UK are currently monitored by targeted, impact-driven, programmes (e.g., fishery or pollution based monitoring) often using traditional techniques, many of which have not changed significantly since the early 1900s. The advent of a new wave of automated technology, in combination with changing political and economic circumstances, means that there is currently a strong drive to move toward a more refined, efficient, and effective way of monitoring. We describe the policy and scientific rationale for monitoring our seas, alongside a comprehensive description of the types of equipment and methodology currently used and the technologies that are likely to be used in the future. We contextualize the way new technologies and methodologies may impact monitoring and discuss how whole ecosystems models can give an integrated, comprehensive approach to impact assessment. Furthermore, we discuss how an understanding of the value of each data point is crucial to assess the true costs and benefits to society of a marine monitoring programme

    Determination of technetium in sea-water using ion exchange and inductively coupled plasma mass spectrometry with ultrasonic nebulisation†

    No full text
    An enrichment–separation scheme employing a strong-base type anion-exchange resin was developed for the determination of99Tc in sea-water by inductively coupled plasma mass spectrometry utilising ultrasonic nebulisation with membrane desolvation. Samples were processed through an anion-exchange column to enrich Tc and to eliminate sea-water matrix ions. The limit of detection for 99Tc in sea-water based on processing a 14 ml sample was 0.03 ng l–1. Accuracy was verified with spike recovery experiments. The potential for rapid on-line sample processing via a microcolumn–flow injection system was demonstrated

    Application of a magnetic extraction technique to assess radionuclide-mineral association in Cumbrian shoreline sediments.

    No full text
    An assessment has been made of the association of 239+240Pu, 241Am and 210Po (in secular equilibrium with 210Pb) with iron minerals using a magnetic extraction technique. Grab samples of beach sand from the Cumbrian (UK) coastline were subjected to successive extractions with a ˜0.1 T ferrite magnet and a ˜0.3 T rare-earth magnet procedure to separate magnetic iron oxide minerals. Radionuclide concentrations in the magnetic extracts were enhanced (by ˜4–6-fold) relative to the residue. Those in the ˜0.1 T magnet extracts were broadly similar to those in the antiferromagnetic material extracted by the ˜0.3 T magnet, despite the very large differences in magnetic property values between the two fractions (one to two orders of magnitude). The percentage of magnetic material in terms of mass was small and therefore, the majority of these radionuclides (on average 88%) were associated with the residue. Removal of stable Fe was incomplete. Given that the radionuclides may also bind to paramagnetic (nonmagnetic) Fe minerals, the data were extrapolated by normalising the results to quantitative Fe removal. This yielded average values of 37%, 45% and 46% for 239+240Pu, 241Am and 210Po(210Pb), respectively, as upper limits for the fraction associated with magnetic+nonmagnetic Fe minerals. There are significant uncertainties inherent in quantifying data from this extraction technique. Nevertheless, it seems reasonable to conclude that radionuclide association with Fe minerals is unlikely to have a significant impact upon the physical dispersion of sediment contaminated by Sellafield discharges in the Irish Sea. However, it may be an important factor in governing Pu redox and redissolution behaviour
    corecore