35 research outputs found

    Enhanced growth of seed viruses for H5N1 influenza vaccines

    Get PDF
    AbstractSeed viruses used to produce inactivated H5N1 influenza vaccines are recombinant viruses with modified avirulent-type hemagglutinin (HA) and intact neuraminidase (NA) genes, both derived from an H5N1 isolate, and all remaining genes from the PR8 strain, which grows well in eggs. However, some reassortants grow suboptimally in eggs, imposing obstacles to timely, cost-efficient vaccine production. Here, we demonstrate that our PR8 strain supports better in ovo growth than the PR8 strain used for the WHO-recommended seed virus, NIBRG-14. Moreover, inclusion of an alternative NA protein further enhanced viral growth in eggs. These findings suggest that our H5N1 vaccine candidates would increase the availability of H5N1 vaccine doses at the onset of a new pandemic

    Low Temperature X-ray Diffraction Study of ZnCr2O4 and Ni0.5Zn0.5Cr2O4

    Get PDF
    金沢大学大学院自然科学研究科Results of x-ray diffraction measurements are presented for ZnCr2O4 and Ni0.5Zn0.5Cr2O4. Splits of the x-ray diffraction spectrum are observed in ZnCr2O4 at 12 K. In Ni0.5Zn0.5Cr2O4 no clear split is observed, but a full width at half maximum (FWHM) shows a steep increase below about 20 K. It is found that the integrated intensity of the diffraction spectra shows a softening behavior at low temperatures in ZnCr2O4. © 2008 Springer Science+Business Media, LLC

    RNAi Screening in Drosophila Cells Identifies New Modifiers of Mutant Huntingtin Aggregation

    Get PDF
    The fruitfly Drosophila melanogaster is well established as a model system in the study of human neurodegenerative diseases. Utilizing RNAi, we have carried out a high-throughput screen for modifiers of aggregate formation in Drosophila larval CNS-derived cells expressing mutant human Huntingtin exon 1 fused to EGFP with an expanded polyglutamine repeat (62Q). 7200 genes, encompassing around 50% of the Drosophila genome, were screened, resulting in the identification of 404 candidates that either suppress or enhance aggregation. These candidates were subjected to secondary screening in normal length (18Q)-expressing cells and pruned to remove dsRNAs with greater than 10 off-target effects (OTEs). De novo RNAi probes were designed and synthesized for the remaining 68 candidates. Following a tertiary round of screening, 21 high confidence candidates were analyzed in vivo for their ability to modify mutant Huntingtin-induced eye degeneration and brain aggregation. We have established useful models for the study of human HD using the fly, and through our RNAi screen, we have identified new modifiers of mutant human Huntingtin aggregation and aggregate formation in the brain. Newly identified modifiers including genes related to nuclear transport, nucleotide processes, and signaling, may be involved in polyglutamine aggregate formation and Huntington disease cascades

    Splicing misregulation of SCN5A contributes to cardiac-conduction delay and heart arrhythmia in myotonic dystrophy

    Get PDF
    Myotonic dystrophy (DM) is caused by the expression of mutant RNAs containing expanded CUG repeats that sequester muscleblind-like (MBNL) proteins, leading to alternative splicing changes. Cardiac alterations, characterized by conduction delays and arrhythmia, are the second most common cause of death in DM. Using RNA sequencing, here we identify novel splicing alterations in DM heart samples, including a switch from adult exon 6B towards fetal exon 6A in the cardiac sodium channel, SCN5A. We find that MBNL1 regulates alternative splicing of SCN5A mRNA and that the splicing variant of SCN5A produced in DM presents a reduced excitability compared with the control adult isoform. Importantly, reproducing splicing alteration of Scn5a in mice is sufficient to promote heart arrhythmia and cardiac-conduction delay, two predominant features of myotonic dystrophy. In conclusion, misregulation of the alternative splicing of SCN5A may contribute to a subset of the cardiac dysfunctions observed in myotonic dystrophy.Peer reviewe
    corecore