29 research outputs found

    Molecular Mechanisms of Membrane Deformation by I-BAR Domain Proteins

    Get PDF
    Conclusions: These data define I-BAR domain as a functional member of the BAR domain superfamily and unravel the mechanisms by which I-BAR domains deform membranes to induce filopodia in cells. Furthermore, our work reveals unexpected divergence in the mechanisms by which evolutionarily distinct groups of I-BAR domains interact with PI(4,5)P(2)-rich membranes

    Thermotropic phase behavior and headgroup interactions of the nonbilayer lipids phosphatidylethanolamine and monogalactosyldiacylglycerol in the dry state

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although biological membranes are organized as lipid bilayers, they contain a substantial fraction of lipids that have a strong tendency to adopt a nonlamellar, most often inverted hexagonal (H<sub>II</sub>) phase. The polymorphic phase behavior of such nonbilayer lipids has been studied previously with a variety of methods in the fully hydrated state or at different degrees of dehydration. Here, we present a study of the thermotropic phase behavior of the nonbilayer lipids egg phosphatidylethanolamine (EPE) and monogalactosyldiacylglycerol (MGDG) with a focus on interactions between the lipid molecules in the interfacial and headgroup regions.</p> <p>Results</p> <p>Liposomes were investigated in the dry state by Fourier-transform Infrared (FTIR) spectroscopy and Differential Scanning Calorimetry (DSC). Dry EPE showed a gel to liquid-crystalline phase transition below 0°C and a liquid-crystalline to H<sub>II </sub>transition at 100°C. MGDG, on the other hand, was in the liquid-crystalline phase down to -30°C and showed a nonbilayer transition at about 85°C. Mixtures (1:1 by mass) with two different phosphatidylcholines (PC) formed bilayers with no evidence for nonbilayer transitions up to 120°C. FTIR spectroscopy revealed complex interactions between the nonbilayer lipids and PC. Strong H-bonding interactions occurred between the sugar headgroup of MGDG and the phosphate, carbonyl and choline groups of PC. Similarly, the ethanolamine moiety of EPE was H-bonded to the carbonyl and choline groups of PC and probably interacted through charge pairing with the phosphate group.</p> <p>Conclusions</p> <p>This study provides a comprehensive characterization of dry membranes containing the two most important nonbilayer lipids (PE and MGDG) in living cells. These data will be of particular relevance for the analysis of interactions between membranes and low molecular weight solutes or soluble proteins that are presumably involved in cellular protection during anhydrobiosis.</p

    Interactions of the antimicrobial peptides temporins with model biomembranes. Comparison of temporins B and L

    No full text
    Temporins are short (10-13 amino acids) and linear antimicrobial peptides first isolated from the skin of the European red frog, Rana temporaria, and are effective against Gram-positive bacteria and Candida albicans. To get insight into their mechanism(s) of action, we compared the effects on model membranes exerted by two members of this family, viz., temporin B (LLPIVGNLLKSLL-NH2) and temporin L (FVQWFSKFLGRIL-NH2). More specifically, we measured their insertion into lipid monolayers as well as their effects on the structural dynamics of liposomal bilayers as revealed by diphenylhexatriene (DPH)- and pyrene-labeled phospholipids. We also observed the impact of these peptides on the topology of giant vesicles. Both temporins readily penetrate into lipid monolayers, their intercalation being enhanced in the presence of the common bacterial negatively charged phospholipid phosphatidylglycerol. Instead, the eukaryotic lipid cholesterol did to some extent counteract their penetration into the lipid films. Both temporin B and temporin L caused an enrichment of phospholipids in the bilayers, and in the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG), these peptides increased acyl chain order. Temporin B had practically no effect on giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), whereas rapid vesiculation was observed when POPG was present. In contrast, temporin L induced vesiculation of both SOPC and SOPC/POPG giant vesicles while the presence of cholesterol in SOPC giant vesicles attenuated this effect

    Temporin L: antimicrobial, haemolytic and cytotoxic activities, and effects on membrane permeabilization in lipid vesicles

    No full text
    The temporins are a family of small, linear antibiotic peptides with intriguing biological properties. We investigated the antibacterial, haemolytic and cytotoxic activities of temporin L (FVQWFSKFLGRIL-NH2), isolated from the skin of the European red frog Rana temporaria. The peptide displayed the highest activity of temporins studied to date, against both human erythrocytes and bacterial and fungal strains. At variance with other known temporins, which are mainly active against Gram-positive bacteria, temporin L was also active against Gram-negative strains such as Pseudomonas aeruginosa A.T.C.C. 15692 and Escherichia coli D21 at concentrations comparable with those that are microbiocidal to Gram-positive bacteria. In addition, temporin L was cytotoxic to three different human tumour cell lines (Hut-78, K-562 and U-937), causing a necrosis-like cell death, although sensitivity to the peptide varied markedly with the specific cell line tested. A study of the interaction of temporin L with liposomes of different lipid compositions revealed that the peptide causes perturbation of bilayer integrity of both neutral and negatively charged membranes, as revealed by the release of a vesicle-encapsulated fluorescent marker, and that the action of the peptide is modulated to some extent by membrane lipid composition. In particular, the presence of negatively charged lipids, in the model bilayer inhibits the lytic power of temporin L. We also show that the release of fluorescent markers caused by temporin L is size-dependent and that the peptide does not have a detergent-like effect on the membrane, suggesting that perturbation of bilayer organization takes place on a local scale, i.e. through the formation of pore-like openings
    corecore