132 research outputs found

    Identification of financial statement fraud in Greece by using computational intelligence techniques

    Get PDF
    The consequences of financial fraud are an issue with far-reaching for investors, lenders, regulators, corporate sectors and consumers. The range of development of new technologies such as cloud and mobile computing in recent years has compounded the problem. Manual detection which is a traditional method is not only inaccurate, expensive and time-consuming but also they are impractical for the management of big data. Auditors, financial institutions and regulators have tried to automated processes using statistical and computational methods. This paper presents comprehensive research in financial statement fraud detection by using machine learning techniques with a particular focus on computational intelligence (CI) techniques. We have collected a sample of 2469 observations since 2002 to 2015. Research gap was identified as none of the existing researchers address the association between financial statement fraud and CI-based detection algorithms and their performance, as reported in the literature. Also, the innovation of this research is that the selection of data sample is aimed to create models which will be capable of detecting the falsification in financial statements

    Lean mass, muscle strength, and physical function in a diverse population of men: a population-based cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Age-related declines in lean body mass appear to be more rapid in men than in women but our understanding of muscle mass and function among different subgroups of men and their changes with age is quite limited. The objective of this analysis is to examine racial/ethnic differences and racial/ethnic group-specific cross-sectional age differences in measures of muscle mass, muscle strength, and physical function among men.</p> <p>Methods</p> <p>Data were obtained from the Boston Area Community Health/Bone (BACH/Bone) Survey, a population-based, cross-sectional, observational survey. Subjects included 1,157 black, Hispanic, and white randomly-selected Boston men ages 30-79 y. Lean mass was assessed by dual-energy x-ray absorptiometry. Upper extremity (grip) strength was assessed with a hand dynamometer and lower extremity physical function was derived from walk and chair stand tests. Upper extremity strength and lower extremity physical function were also indexed by lean mass and lean mass was indexed by the square of height.</p> <p>Results</p> <p>Mean age of the sample was 47.5 y. Substantial cross-sectional age differences in grip strength and physical function were consistent across race/ethnicity. Racial/ethnic differences, with and without adjustment for covariates, were evident in all outcomes except grip strength. Racial differences in lean mass did not translate into parallel differences in physical function. For instance, multivariate modeling (with adjustments for age, height, fat mass, self-rated health and physical activity) indicated that whereas total body lean mass was 2.43 kg (approximately 5%) higher in black compared with white men, black men had a physical function score that was approximately 20% lower than white men.</p> <p>Conclusions</p> <p>In spite of lower levels of lean mass, the higher levels of physical function observed among white compared with non-white men in this study appear to be broadly consistent with known racial/ethnic differences in outcomes.</p

    New aspects in the pathogenesis, prevention, and treatment of hyponatremic encephalopathy in children

    Get PDF
    Hyponatremia is the most common electrolyte abnormality encountered in children. In the past decade, new advances have been made in understanding the pathogenesis of hyponatremic encephalopathy and in its prevention and treatment. Recent data have determined that hyponatremia is a more serious condition than previously believed. It is a major comorbidity factor for a variety of illnesses, and subtle neurological findings are common. It has now become apparent that the majority of hospital-acquired hyponatremia in children is iatrogenic and due in large part to the administration of hypotonic fluids to patients with elevated arginine vasopressin levels. Recent prospective studies have demonstrated that administration of 0.9% sodium chloride in maintenance fluids can prevent the development of hyponatremia. Risk factors, such as hypoxia and central nervous system (CNS) involvement, have been identified for the development of hyponatremic encephalopathy, which can lead to neurologic injury at mildly hyponatremic values. It has also become apparent that both children and adult patients are dying from symptomatic hyponatremia due to inadequate therapy. We have proposed the use of intermittent intravenous bolus therapy with 3% sodium chloride, 2 cc/kg with a maximum of 100 cc, to rapidly reverse CNS symptoms and at the same time avoid the possibility of overcorrection of hyponatremia. In this review, we discuss how to recognize patients at risk for inadvertent overcorrection of hyponatremia and what measures should taken to prevent this, including the judicious use of 1-desamino-8d-arginine vasopressin (dDAVP)

    Experimental Verification of the Elastic Formula for the Aspirated Length of a Single Cell Considering the Size and Compressibility of Cell During Micropipette Aspiration

    Get PDF
    In this study, an aspiration system for elastic spheres was developed to verify the approximate elastic formula for the aspirated length of a single solid-like cell undergoing micropipette aspiration (MPA), which was obtained in our previous study by theoretical analysis and numerical simulation. Using this system, foam silicone rubber spheres with different diameters and mechanical properties were aspirated in a manner similar to the MPA of single cells. Comparisons between the approximate elastic formula and aspiration experiments of spheres indicated that the predictions of the formula agreed with the experimental results. Additionally, combined with the MPA data of rabbit chondrocytes, differences in terms of the elastic parameters derived from the half-space model, incompressible sphere model, and compressible sphere model were explored. The results demonstrated that the parameter ξ (ξ = R/a, where R is the radius of the cell and a is the inner radius of the micropipette) and Poisson’s ratio significantly influenced the determination of the elastic modulus and bulk modulus of the cell. This work developed for the first time an aspiration system of elastic spheres to study the elastic responses of the MPA of a single cell and provided new evidence supporting the use of the approximate elastic formula to determine cellular elastic parameters from the MPA data

    Shedding Light on the Galaxy Luminosity Function

    Full text link
    From as early as the 1930s, astronomers have tried to quantify the statistical nature of the evolution and large-scale structure of galaxies by studying their luminosity distribution as a function of redshift - known as the galaxy luminosity function (LF). Accurately constructing the LF remains a popular and yet tricky pursuit in modern observational cosmology where the presence of observational selection effects due to e.g. detection thresholds in apparent magnitude, colour, surface brightness or some combination thereof can render any given galaxy survey incomplete and thus introduce bias into the LF. Over the last seventy years there have been numerous sophisticated statistical approaches devised to tackle these issues; all have advantages -- but not one is perfect. This review takes a broad historical look at the key statistical tools that have been developed over this period, discussing their relative merits and highlighting any significant extensions and modifications. In addition, the more generalised methods that have emerged within the last few years are examined. These methods propose a more rigorous statistical framework within which to determine the LF compared to some of the more traditional methods. I also look at how photometric redshift estimations are being incorporated into the LF methodology as well as considering the construction of bivariate LFs. Finally, I review the ongoing development of completeness estimators which test some of the fundamental assumptions going into LF estimators and can be powerful probes of any residual systematic effects inherent magnitude-redshift data.Comment: 95 pages, 23 figures, 3 tables. Now published in The Astronomy & Astrophysics Review. This version: bring in line with A&AR format requirements, also minor typo corrections made, additional citations and higher rez images adde

    From sequence to phenotype: functional genomics of Phytophthora

    No full text
    Oomycetes, such as Phytophthora, downy mildew causal agents, and Pythium, form a unique branch of eukaryotic-plant pathogens with an independent evolutionary history. Among the oomycetes, Phytophthora spp. cause some of the most destructive plant diseases in the world, and are arguably the most devastating pathogens of dicotyledonous plants. Large scale DNA sequencing (genomics) approaches promise to impact Our understanding of the molecular basis of pathogenicity and host specificity in Phytophthora by facilitating the isolation of novel virulence and avirulence genes, as well as by helping to identify targets for chemical control. Structural genomic studies of Phytophthora are well under way. The challenge in the postgenome era is to link a sequence to a phenotype with as little experimental effort as possible, using computational tools for data mining and robust high throughput functional assays. In this article, we review our strategy of applying a sequence-to-phenotype (or functional genomics) paradigm to the discovery of novel virulence and avirulence genes, as well as the identification of novel fungicide targets in Phytophthora
    corecore