27 research outputs found

    Co-infection of the four major Plasmodium species: effects on densities and gametocyte carriage

    Get PDF
    BACKGROUND: Co-infection of the four major species of human malaria parasite Plasmodium falciparum (Pf), P. vivax (Pv), P. malariae (Pm), and P. ovale sp. (Po) is regularly observed, but there is limited understanding of between-species interactions. In particular, little is known about the effects of multiple Plasmodium species co-infections on gametocyte production. METHODS: We developed molecular assays for detecting asexual and gametocyte stages of Pf, Pv, Pm, and Po. This is the first description of molecular diagnostics for Pm and Po gametocytes. These assays were implemented in a unique epidemiological setting in Papua New Guinea with sympatric transmission of all four Plasmodium species permitting a comprehensive investigation of species interactions. FINDINGS: The observed frequency of Pf-Pv co-infection for asexual parasites (14.7%) was higher than expected from individual prevalence rates (23.8%Pf x 47.4%Pv = 11.3%). The observed frequency of co-infection with Pf and Pv gametocytes (4.6%) was higher than expected from individual prevalence rates (13.1%Pf x 28.2%Pv = 3.7%). The excess risk of co-infection was 1.38 (95% confidence interval (CI): 1.09, 1.67) for all parasites and 1.37 (95% CI: 0.95, 1.79) for gametocytes. This excess co-infection risk was partially attributable to malaria infections clustering in some villages. Pf-Pv-Pm triple infections were four times more frequent than expected by chance alone, which could not be fully explained by infections clustering in highly exposed individuals. The effect of co-infection on parasite density was analyzed by systematic comparison of all pairwise interactions. This revealed a significant 6.57-fold increase of Pm density when co-infected with Pf. Pm gametocytemia also increased with Pf co-infection. CONCLUSIONS: Heterogeneity in exposure to mosquitoes is a key epidemiological driver of Plasmodium co-infection. Among the four co-circulating parasites, Pm benefitted most from co-infection with other species. Beyond this, no general prevailing pattern of suppression or facilitation was identified in pairwise analysis of gametocytemia and parasitemia of the four species. TRIAL REGISTRATION: This trial is registered with ClinicalTrials.gov, Trial ID: NCT02143934

    Differential impact of malaria control interventions on P. falciparum and P. vivax infections in young Papua New Guinean children

    Get PDF
    INTRODUCTION: As malaria transmission declines, understanding the differential impact of intensified control on Plasmodium falciparum relative to Plasmodium vivax and identifying key drivers of ongoing transmission is essential to guide future interventions. METHODS: Three longitudinal child cohorts were conducted in Papua New Guinea before (2006/2007), during (2008) and after scale-up of control interventions (2013). In each cohort, children aged 1-5 years were actively monitored for infection and illness. Incidence of malaria episodes, molecular force of blood-stage infections (molFOB) and population-averaged prevalence of infections were compared across the cohorts to investigate the impact of intensified control in young children and the key risk factors for malaria infection and illness in 2013. RESULTS: Between 2006 and 2008, P. falciparum infection prevalence, molFOB, and clinical malaria episodes reduced by 47%, 59% and 69%, respectively, and a further 49%, 29% and 75% from 2008 to 2013 (prevalence 41.6% to 22.1% to 11.2%; molFOB: 3.4 to 1.4 to 1.0 clones/child/year; clinical episodes incidence rate (IR) 2.6 to 0.8 to IR 0.2 episodes/child/year). P. vivax clinical episodes declined at rates comparable to P. falciparum between 2006, 2008 and 2013 (IR 2.5 to 1.1 to 0.2), while P. vivax molFOB (2006, 9.8; 2008, 12.1) and prevalence (2006, 59.6%; 2008, 65.0%) remained high in 2008. However, in 2013, P. vivax molFOB (1.2) and prevalence (19.7%) had also substantially declined. In 2013, 89% of P. falciparum and 93% of P. vivax infections were asymptomatic, 62% and 47%, respectively, were sub-microscopic. Area of residence was the major determinant of malaria infection and illness. CONCLUSION: Intensified vector control and routine case management had a differential impact on rates of P. falciparum and P. vivax infections but not clinical malaria episodes in young children. This suggests comparable reductions in new mosquito-derived infections but a delayed impact on P. vivax relapsing infections due to a previously acquired reservoir of hypnozoites. This demonstrates the need to strengthen implementation of P. vivax radical cure to maximise impact of control in co-endemic areas. The high heterogeneity of malaria in 2013 highlights the importance of surveillance and targeted interventions to accelerate towards elimination

    Multiplicity and Diversity of Plasmodium vivax Infections in a Highly Endemic Region in Papua New Guinea

    Get PDF
    Plasmodium vivax is highly endemic in the lowlands of Papua New Guinea and accounts for a large proportion of the malaria cases in children less than 5 years of age. We collected 2117 blood samples at 2-monthly intervals from a cohort of 268 children aged 1 to 4.5 years and estimated the diversity and multiplicity of P. vivax infection. All P. vivax clones were genotyped using the merozoite surface protein 1 F3 fragment (msp1F3) and the microsatellite MS16 as molecular markers. High diversity was observed with msp1F3 (HE = 88.1%) and MS16 (HE = 97.8%). Of the 1162 P. vivax positive samples, 74% harbored multi-clone infections with a mean multiplicity of 2.7 (IQR = 1–3). The multiplicity of P. vivax infection increased slightly with age (P = 0.02), with the strongest increase in very young children. Intensified efforts to control malaria can benefit from knowledge of the diversity and MOI both for assessing the endemic situation and monitoring the effects of interventions

    Reduction in acute filariasis morbidity during a mass drug administration trial to eliminate lymphatic filariasis in Papua New Guinea.

    Get PDF
    Background Acute painful swelling of the extremities and scrotum are debilitating clinical manifestations of Wuchereria bancrofti infection. The ongoing global program to eliminate filariasis using mass drug administration is expected to decrease this and other forms of filarial morbidity in the future by preventing establishment of new infections as a consequence of eliminating transmission by the mosquito vector. We examined whether mass treatment with anti-filarial drugs has a more immediate health benefit by monitoring acute filariasis morbidity in Papua New Guinean communities that participated in a 5-year mass drug administration trial. Methodology/Principal Findings Weekly active surveillance for acute filariasis morbidity defined by painful swelling of the extremities, scrotum and breast was performed 1 year before and each year after 4 annual mass administrations of anti-filarial drugs (16,480 person-years of observation). Acute morbidity events lasted <3 weeks in 92% of affected individuals and primarily involved the leg (74–79% of all annual events). The incidence for all communities considered together decreased from 0.39 per person-year in the pre-treatment year to 0.31, 0.15, 0.19 and 0.20 after each of 4 annual treatments (p<0.0001). Residents of communities with high pre-treatment transmission intensities (224–742 infective bites/person/year) experienced a greater reduction in acute morbidity (0.62 episodes per person-year pre-treatment vs. 0.30 in the 4th post-treatment year) than residents of communities with moderate pre-treatment transmission intensities (24–167 infective bites/person/year; 0.28 episodes per person-year pre-treatment vs. 0.16 in the 4th post-treatment year). Conclusions Mass administration of anti-filarial drugs results in immediate health benefit by decreasing the incidence of acute attacks of leg and arm swelling in people with pre-existing infection. Reduction in acute filariasis morbidity parallels decreased transmission intensity, suggesting that continuing exposure to infective mosquitoes is involved in the pathogenesis of acute filariasis morbidity

    Reduced Plasmodium vivax Erythrocyte Infection in PNG Duffy-Negative Heterozygotes

    Get PDF
    BACKGROUND: Erythrocyte Duffy blood group negativity reaches fixation in African populations where Plasmodium vivax (Pv) is uncommon. While it is known that Duffy-negative individuals are highly resistant to Pv erythrocyte infection, little is known regarding Pv susceptibility among heterozygous carriers of a Duffy-negative allele (+/−). Our limited knowledge of the selective advantages or disadvantages associated with this genotype constrains our understanding of the effect that interventions against Pv may have on the health of people living in malaria-endemic regions. METHODS AND FINDINGS: We conducted cross-sectional malaria prevalence surveys in Papua New Guinea (PNG), where we have previously identified a new Duffy-negative allele among individuals living in a region endemic for all four human malaria parasite species. We evaluated infection status by conventional blood smear light microscopy and semi-quantitative PCR-based strategies. Analysis of a longitudinal cohort constructed from our surveys showed that Duffy heterozygous (+/−) individuals were protected from Pv erythrocyte infection compared to those homozygous for wild-type alleles (+/+) (log-rank tests: LM, p = 0.049; PCR, p = 0.065). Evaluation of Pv parasitemia, determined by semi-quantitative PCR-based methods, was significantly lower in Duffy +/− vs. +/+ individuals (Mann-Whitney U: p = 0.023). Overall, we observed no association between susceptibility to P. falciparum erythrocyte infection and Duffy genotype. CONCLUSIONS: Our findings provide the first evidence that Duffy-negative heterozygosity reduces erythrocyte susceptibility to Pv infection. As this reduction was not associated with greater susceptibility to Pf malaria, our in vivo observations provide evidence that Pv-targeted control measures can be developed safely

    High sensitivity detection of Plasmodium species reveals positive correlations between infections of different species, shifts in age distribution and reduced local variation in Papua New Guinea

    Get PDF
    BACKGROUND: When diagnosed by standard light microscopy (LM), malaria prevalence can vary significantly between sites, even at local scale, and mixed species infections are consistently less common than expect in areas co-endemic for Plasmodium falciparum, Plasmodium vivax and Plasmodium malariae. The development of a high-throughput molecular species diagnostic assay now enables routine PCR-based surveillance of malaria infections in large field and intervention studies, and improves resolution of species distribution within and between communities. METHODS: This study reports differences in the prevalence of infections with all four human malarial species and of mixed infections as diagnosed by LM and post-PCR ligase detection reaction-fluorescent microsphere (LDR-FMA) assay in 15 villages in the central Sepik area of Papua New Guinea. RESULTS: Significantly higher rates of infection by P. falciparum, P. vivax, P. malariae and Plasmodium ovale were observed in LDR-FMA compared to LM diagnosis (p > 0.001). Increases were particularly pronounced for P. malariae (3.9% vs 13.4%) and P. ovale (0.0% vs 4.8%). In contrast to LM diagnosis, which suggested a significant deficit of mixed species infections, a significant excess of mixed infections over expectation was detected by LDR-FMA (p > 0.001). Age of peak prevalence shifted to older age groups in LDR-FMA diagnosed infections for P. falciparum (LM: 7-9 yrs 47.5%, LDR-FMA: 10-19 yrs 74.2%) and P. vivax (LM: 4-6 yrs 24.2%, LDR-FMA: 7-9 yrs 50.9%) but not P. malariae infections (10-19 yrs, LM: 7.7% LDR-FMA: 21.6%). Significant geographical variation in prevalence was found for all species (except for LM-diagnosed P. falciparum), with the extent of this variation greater in LDR-FMA than LM diagnosed infections (overall, 84.4% vs. 37.6%). Insecticide-treated bednet (ITN) coverage was also the dominant factor linked to geographical differences in Plasmodium species infection prevalence explaining between 60.6% - 74.5% of this variation for LDR-FMA and 81.8% - 90.0% for LM (except P. falciparum), respectively. CONCLUSION: The present study demonstrates that application of molecular diagnosis reveals patterns of malaria risk that are significantly different from those obtained by standard LM. Results provide insight relevant to design of malaria control and eradication strategie

    Mass drug administration trial to eliminate lymphatic filariasis in Papua New Guinea: changes in microfilaremia, filarial antigen, and Bm14 antibody after cessation

    No full text
    Laboratory tools to monitor infection burden are important to evaluate progress and determine endpoints in programs to eliminate lymphatic filariasis. We evaluated changes in Wuchereria bancrofti microfilaria, filarial antigen and Bm14 antibody in individuals who participated in a five-year mass drug administration trial in Papua New Guinea. Comparing values before treatment and one year after four annual treatments, the proportion of microfilaria positive individuals declined to the greatest degree, with less marked change in antibody and antigen rates. Considering children as sentinel groups who reflect recent transmission intensity, children surveyed before the trial were more frequently microfilaria and antibody positive than those examined one year after the trial stopped. In contrast, antigen positive rates were similar in the two groups. All infection indicators continued to decline five years after cessation of mass drug administration; Bm14 antibody persisted in the greatest proportion of individuals. These data suggest that Bm14 antibody may be a sensitive test to monitor continuing transmission during and after mass drug administration aimed at eliminating transmission of lymphatic filariasis

    A high force of Plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in Papua New Guinean children

    Get PDF
    When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax (molFOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum.; P. vivax molFOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1-4.5 years.; On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with mol FOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), molFOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p>0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02).; P. vivax molFOB is considerably higher than P. falciparum molFOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria

    Identification of novel Plasmodium vivax proteins associated with protection against clinical malaria

    Get PDF
    As progress towards malaria elimination continues, the challenge posed by the parasite species Plasmodium vivax has become more evident. In many regions co-endemic for P. vivax and Plasmodium falciparum, as transmission has declined the proportion of cases due to P. vivax has increased. Novel tools that directly target P. vivax are thus warranted for accelerated elimination. There is currently no advanced vaccine for P. vivax and only a limited number of potential candidates in the pipeline. In this study we aimed to identify promising P. vivax proteins that could be used as part of a subunit vaccination approach. We screened 342 P. vivax protein constructs for their ability to induce IgG antibody responses associated with protection from clinical disease in a cohort of children from Papua New Guinea. This approach has previously been used to successfully identify novel candidates. We were able to confirm previous results from our laboratory identifying the proteins reticulocyte binding protein 2b and StAR-related lipid transfer protein, as well as at least four novel candidates with similar levels of predicted protective efficacy. Assessment of these P. vivax proteins in further studies to confirm their potential and identify functional mechanisms of protection against clinical disease are warranted
    corecore