38 research outputs found

    Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia

    Get PDF
    Background: The majority of vector-borne infections occur in the tropics, including Africa, but molecular eco- epidemiological studies are seldom reported from these regions. In particular, most previously published data on ticks in Ethiopia focus on species distribution, and only a few molecular studies on the occurrence of tick-borne pathogens or on ecological factors influencing these. The present study was undertaken to evaluate, if ticks collected from cattle in different Ethiopian biotopes harbour (had access to) different pathogens. Methods: In South-Western Ethiopia 1032 hard ticks were removed from cattle grazing in three kinds of tick biotopes. DNA was individually extracted from one specimen of both sexes of each tick species per cattle. These samples were molecularly analysed for the presence of tick-borne pathogens. Results: Amblyomma variegatum was significantly more abundant on mid highland, than on moist highland. Rhipicephalus decoloratus was absent from savannah lowland, where virtually only A. cohaerens was found. In the ticks Coxiella burnetii had the highest prevalence on savannah lowland. PCR positivity to Theileria spp. did not appear to depend on the biotope, but some genotypes were unique to certain tick species. Significantly more A. variegatum specimens were rickettsia-positive, than those of other tick species. The presence of rickettsiae ( R. africae ) appeared to be associated with mid highland in case of A. variegatum and A. cohaerens . The low level of haemoplasma positivity seemed to be equally distributed among the tick species, but was restricted to one biotope type. Conclusions: The tick biotope, in which cattle are grazed, will influence not only the tick burden of these hosts, but also the spectrum of pathogens in their ticks. Thus, the presence of pathogens with alternative (non-tick-borne) transmission routes, with transstadial or with transovarial transmission by ticks appeared to be associated with the biotope type, with the tick species, or both, respectively

    Impact of a freeway on the dispersal of ticks and Ixodes ricinus-borne pathogens: forested resting areas may become Lyme disease hotspots

    Get PDF
    Man-made barriers are well known for their effects on ecosystems. Habitat fragmentation, for instance, is a recognised consequence of modern-day infrastructure. The aim of the present study was to investigate the diversity and abundance of tick species, as well as the risks of acquiring tick-borne infections in habitats adjacent to a freeway. Therefore, ixodid ticks were collected from the vegetation at two-week intervals (in the main tick season, from March to June) in eight habitats of different types (forest, grove, grassland) along both sides of a freeway. Ixodes ricinus females were molecularly screened for three species of tick-borne bacteria. In the study period, 887 ixodid ticks were collected. These included 704 I. ricinus (79.4%), 51 Dermacentor reticulatus (5.7%), 78 D. marginatus (8.8%), 35 Haemaphysalis inermis (3.9%) and 19 H. concinna (2.1%). There was no significant difference in the abundance of tick species between similar habitats separated by the freeway, except for the absence of Dermacentor spp. on one side. In I. ricinus females, the overall prevalence of Anaplasma phagocytophilum was low, and (in part due to this low rate) did not show significant difference between the two sides of the freeway. Rickettsia helvetica had significantly different overall prevalence between two distant habitats along the same side of the freeway (12.3% vs. 31.4%), but not between habitats on the opposite sides. Borrelia burgdorferi s.l. showed significantly different overall prevalence between habitats both on the same and on the opposite sides of the freeway (8.6–35.9%), and the difference was higher if relevant habitats were also separated by the freeway. Importantly, the prevalence rate of the Lyme disease agent was highest in a forested resting area of the freeway, and was significantly inversely proportional to the prevalence of A. phagocytophilum (taking into account all evaluated habitats), apparently related to deer population density. Prevalence rates of these bacteria also differed significantly on single sampling occasions between: (1) closely situated habitats of different types; (2) distant and either similar or different habitat types; and (3) habitats on the opposite sides of the freeway. In conclusion, the findings of the present study show that a fenced freeway may contribute to differences in tick species diversity and tick-borne pathogen prevalence along its two sides, and this effect is most likely a consequence of its barrier role preventing deer movements

    Identification of novel Coxiella burnetii genotypes from Ethiopian ticks

    Get PDF
    Background: Coxiella burnetii , the etiologic agent of Q fever, is a highly infectious zoonotic bacterium. Genetic information about the strains of this worldwide distributed agent circulating on the African continent is limited. The aim of the present study was the genetic characterization of C. burnetii DNA samples detected in ticks collected from Ethiopian cattle and their comparison with other genotypes found previously in other parts of the world. Methodology/Principal Findings: A total of 296 tick samples were screened by real-time PCR targeting the IS 1111 region of C. burnetii genome and from the 32 positive samples, 8 cases with sufficient C. burnetii DNA load ( Amblyomma cohaerens ,n 5 6; A. variegatum ,n 5 2) were characterized by multispacer sequence typing (MST) and multiple-locus variable-number tandem repeat analysis (MLVA). One novel sequence type (ST), the proposed ST52, was identified by MST. The MLVA-6 discriminated the proposed ST52 into two newly identified MLVA genotypes: type 24 or AH was detected in both Amblyomma species while type 26 or AI was found only in A. cohaerens . Conclusions/Significance: Both the MST and MLVA genotypes of the present work are closely related to previously described genotypes found primarily in cattle samples from different parts of the globe. This finding is congruent with the source hosts of the analyzed Ethiopian ticks, as these were also collected from cattle. The present study provides genotype information of C. burnetii from this seldom studied East-African region as well as further evidence for the presumed host-specific adaptation of this agent

    Development of Molecular Methods for Rapid Differentiation of Mycoplasma gallisepticum Vaccine Strains from Field Isolates.

    Get PDF
    Mycoplasma gallisepticum is among the most economically significant mycoplasmas causing production losses in poultry. Seven melt-curve and agarose gel-based mismatch amplification mutation assays (MAMAs) and one PCR are provided in the present study to distinguish the M. gallisepticum vaccine strains and field isolates based on mutations in the crmA, gapA, lpd, plpA, potC, glpK, and hlp2 genes. A total of 239 samples (M. gallisepticum vaccine and type strains, pure cultures, and clinical samples) originating from 16 countries and from at least eight avian species were submitted to the presented assays for validation or in blind tests. A comparison of the data from 126 samples (including sequences available at GenBank) examined by the developed assays and a recently developed multilocus sequence typing assay showed congruent typing results. The sensitivity of the melt-MAMA assays varied between 101 and 104M. gallisepticum template copies/reaction, while that of the agarose-MAMAs ranged from 103 to 105 template copies/reaction, and no cross-reactions occurred with other Mycoplasma species colonizing birds. The presented assays are also suitable for discriminating multiple strains in a single sample. The developed assays enable the differentiation of live vaccine strains by targeting two or three markers/vaccine strain; however, considering the high variability of the species, the combined use of all assays is recommended. The suggested combination provides a reliable tool for routine diagnostics due to the sensitivity and specificity of the assays, and they can be performed directly on clinical samples and in laboratories with basic PCR equipment

    Evaluation of in vitro inhibitory potential of type-I interferons and different antiviral compounds on rabies virus replication

    No full text
    Five different compounds were tested for their in vitro inhibitory effect against RABV multiplication in mouse neuroblastoma (N2A) cell line. N2A cells were infected with the fixed RABV strain CVS-11 one hour prior to adding antivirals or their respective combinations. The infectious titre of RABV as well as the quantity of viral RNA was determined in the cell culturing medium after 48h. All five tested compounds (mouse interferon (IFN)-alpha and -beta, ribavirin, favipiravir (T-705) and sorafenib) reduced viral replication in a concentration-dependent manner: IFN-beta and sorafenib both provided 73.71% relative inhibition of viral replication in the highest non-cytotoxic concentration, while ribavirin caused 48.07%, IFN-alpha caused 44.87% and favipiravir caused 35.25% relative inhibition, respectively. When applied in combination, their antiviral activity was not synergistic, but a pronounced inhibition was detected when IFN-beta was combined with sorafenib, ribavirin, or favipiravir. The highest antiviral effect was caused by the combination of IFN-beta and sorafenib (77.19% relative inhibition). In other combinations there was an antagonistic effect detected in the reduction of viral replication. The results demonstrate that these compounds can be promising candidates for a potential combination treatment of rabies, noting that some combinations are not favourable in vitro, which makes thorough in vivo studies necessary

    Impact of a freeway on the dispersal of ticks and Ixodes ricinus-borne pathogens: forested resting areas may become Lyme disease hotspots

    Full text link
    Man-made barriers are well known for their effects on ecosystems. Habitat fragmentation, for instance, is a recognised consequence of modern-day infrastructure. The aim of the present study was to investigate the diversity and abundance of tick species, as well as the risks of acquiring tick-borne infections in habitats adjacent to a freeway. Therefore, ixodid ticks were collected from the vegetation at two-week intervals (in the main tick season, from March to June) in eight habitats of different types (forest, grove, grassland) along both sides of a freeway. Ixodes ricinus females were molecularly screened for three species of tick-borne bacteria. In the study period, 887 ixodid ticks were collected. These included 704 I. ricinus (79.4%), 51 Dermacentor reticulatus (5.7%), 78 D. marginatus (8.8%), 35 Haemaphysalis inermis (3.9%) and 19 H. concinna (2.1%). There was no significant difference in the abundance of tick species between similar habitats separated by the freeway, except for the absence of Dermacentor spp. on one side. In I. ricinus females, the overall prevalence of Anaplasma phagocytophilum was low, and (in part due to this low rate) did not show significant difference between the two sides of the freeway. Rickettsia helvetica had significantly different overall prevalence between two distant habitats along the same side of the freeway (12.3% vs. 31.4%), but not between habitats on the opposite sides. Borrelia burgdorferi s.l. showed significantly different overall prevalence between habitats both on the same and on the opposite sides of the freeway (8.6-35.9%), and the difference was higher if relevant habitats were also separated by the freeway. Importantly, the prevalence rate of the Lyme disease agent was highest in a forested resting area of the freeway, and was significantly inversely proportional to the prevalence of A. phagocytophilum (taking into account all evaluated habitats), apparently related to deer population density. Prevalence rates of these bacteria also differed significantly on single sampling occasions between: (1) closely situated habitats of different types; (2) distant and either similar or different habitat types; and (3) habitats on the opposite sides of the freeway. In conclusion, the findings of the present study show that a fenced freeway may contribute to differences in tick species diversity and tick-borne pathogen prevalence along its two sides, and this effect is most likely a consequence of its barrier role preventing deer movements

    Neighbor-joining tree showing the placement and phylogenetic relationships of the novel sequence type (proposed ST 52) (highlighted area) from this study with known STs [8], [14], [15].

    No full text
    <p>Bootstrap values of >70 are shown (1000 replicates). The scale bar represents the average number of substitutions per site. Isolate origins and sources are given according to previous publications <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Glazunova1" target="_blank">[8]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Loftis1" target="_blank">[13]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Multi1" target="_blank">[14]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Angelakis1" target="_blank">[18]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Tilburg2" target="_blank">[23]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Tilburg3" target="_blank">[27]</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Reichel1" target="_blank">[30]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0113213#pone.0113213-Mahamat1" target="_blank">[32]</a> using the following location codes: Austria (AT), Canada (CA), Central African Republic (CF), Czech Republic (CZ), Ethiopia (ET), France (FR), French Guiana (GF), Germany (DE), Greece (GR), Hungary (HU), Italy (IT), Japan (JP), Kazakhstan (KZ), Kyrgyzstan (KG), Mongolia (MN), Namibia (NA), Netherlands (NL), Poland (PL), Portugal (PT), Romania (RO), Russian Federation (RU), Senegal (SN), Slovakia (SK), Spain (ES), Switzerland (CH), Ukraine (UA), United Kingdom (GB), United States (US) and Uzbekistan (UZ).</p
    corecore