12 research outputs found

    Neural cognitive control moderates the association between insular risk processing and risk-taking behaviors via perceived stress in adolescents

    Get PDF
    Adolescence is a critical period for the initiation of risk-taking behaviors. We examined the longitudinal interplay between neural correlates of risk processing and cognitive control in predicting risk-taking behaviors via stress. The sample consisted of 167 adolescents (53% males) who were assessed twice (MAgeTime1 = 14.13, MAgeTime2 = 15.05). Neural risk processing was operationalized as blood-oxygen-level-dependent (BOLD) responses in the anterior insula during a lottery choice task and neural cognitive control as BOLD responses during an inhibitory control task. Adolescents reported on perceived stress and risk-taking behaviors. Structural equation modeling analyses indicated that low insular risk processing predicted increases in perceived stress, while perceived stress did not predict changes in insular risk processing across one year. Moreover, significant moderation by neural cognitive control indicated that low insular risk processing predicted increases in risk-taking behaviors via increases in perceived stress among adolescents with poor neural cognitive control, but not among adolescents with good neural cognitive control. The results suggest that risk processing in the anterior insular cortex plays an important role in stress experience and risk-taking behaviors particularly for vulnerable adolescents with poor neural cognitive control

    Policy Adjustment in a Dynamic Economic Game

    Get PDF
    Making sequential decisions to harvest rewards is a notoriously difficult problem. One difficulty is that the real world is not stationary and the reward expected from a contemplated action may depend in complex ways on the history of an animal's choices. Previous functional neuroimaging work combined with principled models has detected brain responses that correlate with computations thought to guide simple learning and action choice. Those works generally employed instrumental conditioning tasks with fixed action-reward contingencies. For real-world learning problems, the history of reward-harvesting choices can change the likelihood of rewards collected by the same choices in the near-term future. We used functional MRI to probe brain and behavioral responses in a continuous decision-making task where reward contingency is a function of both a subject's immediate choice and his choice history. In these more complex tasks, we demonstrated that a simple actor-critic model can account for both the subjects' behavioral and brain responses, and identified a reward prediction error signal in ventral striatal structures active during these non-stationary decision tasks. However, a sudden introduction of new reward structures engages more complex control circuitry in the prefrontal cortex (inferior frontal gyrus and anterior insula) and is not captured by a simple actor-critic model. Taken together, these results extend our knowledge of reward-learning signals into more complex, history-dependent choice tasks. They also highlight the important interplay between striatum and prefrontal cortex as decision-makers respond to the strategic demands imposed by non-stationary reward environments more reminiscent of real-world tasks

    Social signals of safety and risk confer utility and have asymmetric effects on observers' choices

    No full text
    Individuals' risk attitudes are known to guide choices about uncertain options. However, in the presence of others' decisions, these choices can be swayed and manifest as riskier or safer behavior than one would express alone. To test the mechanisms underlying effective social 'nudges' in human decision-making, we used functional neuroimaging and a task in which participants made choices about gambles alone and after observing others' selections. Against three alternative explanations, we found that observing others' choices of gambles increased the subjective value (utility) of those gambles for the observer. This 'other-conferred utility' was encoded in ventromedial prefrontal cortex, and these neural signals predicted conformity. We further identified a parametric interaction with individual risk preferences in anterior cingulate cortex and insula. These data provide a neuromechanistic account of how information from others is integrated with individual preferences that may explain preference-congruent susceptibility to social signals of safety and risk

    Damage to dorsolateral prefrontal cortex affects tradeoffs between honesty and self-interest

    No full text
    Substantial correlational evidence exists suggesting a critical role for prefrontal regions in honest and dishonest behavior, but causal evidence specifying the nature of this involvement remains absent. Here we show using the lesion method that damage to the human dorsolateral prefrontal cortex (DLPFC) decreased the effect of honesty concerns on behavior in economic games that pit honesty motives against self-interest, but did not affect decisions where honesty concerns were absent. These results point to a causal role for DLPFC in enabling honest behavior
    corecore