542 research outputs found

    Lepton Flavor Violation and the Origin of the Seesaw Mechanism

    Get PDF
    The right--handed neutrino mass matrix that is central to the understanding of small neutrino masses via the seesaw mechanism can arise either (i) from renormalizable operators or (ii) from nonrenormalizable or super-renormalizable operators, depending on the symmetries and the Higgs content of the theory beyond the Standard Model. In this paper, we study lepton flavor violating (LFV) effects in the first class of seesaw models wherein the \nu_R Majorana masses arise from renormalizable Yukawa couplings involving a B-L = 2 Higgs field. We present detailed predictions for \tau -> \mu + \gamma and \mu -> e + \gamma branching ratios in these models taking the current neutrino oscillation data into account. Focusing on minimal supergravity models, we find that for a large range of MSSM parameters suggested by the relic abundance of neutralino dark matter and that is consistent with Higgs boson mass and other constraints, these radiative decays are in the range accessible to planned experiments. We compare these predictions with lepton flavor violation in the second class of models arising entirely from the Dirac Yukawa couplings. We study the dependence of the ratio r \equiv B(\mu -> e+\gamma)/B(\tau ->\mu +\gamma) on the MSSM parameters and show that measurement of r can provide crucial insight into the origin of the seesaw mechanism.Comment: 20 pages, Revtex, 7 figure

    Implications of a Massless Neutralino for Neutrino Physics

    Get PDF
    We consider the phenomenological implications of a soft SUSY breaking term BN at the TeV scale (here B is the U(1)_Y gaugino and N is the right-handed neutrino field). In models with a massless (or nearly massless) neutralino, such a term will give rise through the see-saw mechanism to new contributions to the mass matrix of the light neutrinos. We treat the massless neutralino as an (almost) sterile neutrino and find that its mass depends on the square of the soft SUSY breaking scale, with interesting consequences for neutrino physics. We also show that, although it requires fine-tuning, a massless neutralino in the MSSM or NMSSM is not experimentally excluded. The implications of this scenario for neutrino physics are discussed.Comment: 14 pages, latex, no figure

    A SUSY SU(5) Grand Unified Model of Tri-Bimaximal Mixing from A4

    Get PDF
    We discuss a grand unified model based on SUSY SU(5) in extra dimensions and on the flavour group A4xU(1) which, besides reproducing tri-bimaximal mixing for neutrinos with the accuracy required by the data, also leads to a natural description of the observed pattern of quark masses and mixings.Comment: 19 page

    Hierarchical Neutrino Mass Matrices, CP violation and Leptogenesis

    Full text link
    In this work we study examples of hierarchical neutrino mass matrices inspired by family symmetries, compatible with experiments on neutrino oscillations, and for which there is a connection among the low energy CP violation phase associated to neutrino oscillations, the phases appearing in the amplitude of neutrinoless double beta decay, and the phases relevant for leptogenesis. In particular, we determine the predictions from a texture based on an underlying SU(3) family symmetry together with a GUT symmetry, and a strong hierarchy for the masses of the heavy right handed Majorana masses. We also give some examples of inverted hierarchies of neutrino masses, which may be motivated in the context of U(1) family symmetries.Comment: 34 pages. Replaced with published version -typos, corrections and references adde

    Implications of a charged-current anomaly at HERA

    Get PDF
    We demonstrate that in the presence of mixing between different scalar leptoquark multiplets it is possible to simultaneously account for the HERA high-Q2Q^2 neutral current anomaly, and produce a charged current anomaly of comparable magnitude. The reduced branching ratio to electrons and jets of the lightest leptoquark state results in a significant weakening of the CDF/D0 limits on scalar leptoquarks; masses consistent with the HERA neutral current excess are comfortably within the allowed range. We show that the possibilities for such a successful mixed leptoquark scenario are quite limited, and we investigate some aspects of their phenomenology.Comment: 10 pages Latex. Corrected 3-body decay width

    A Supersymmetric D4 Model for mu-tau Symmetry

    Full text link
    We construct a supersymmeterized version of the model presented by Grimus and Lavoura (GL) in [1] which predicts theta_{23} maximal and theta_{13}=0 in the lepton sector. For this purpose, we extend the flavor group, which is D4 x Z2^{(aux)} in the original model, to D4 x Z5. An additional difference is the absence of right-handed neutrinos. Despite these changes the model is the same as the GL model, since theta_{23} maximal and theta_{13}=0 arise through the same mismatch of D4 subgroups, D2 in the charged lepton and Z2 in the neutrino sector. In our setup D4 is solely broken by gauge singlets, the flavons. We show that their vacuum structure, which leads to the prediction of theta_{13} and theta_{23}, is a natural result of the scalar potential. We find that the neutrino mass matrix only allows for inverted hierarchy, if we assume a certain form of spontaneous CP violation. The quantity |m_{ee}|, measured in neutrinoless double beta decay, is nearly equal to the lightest neutrino mass m3. The Majorana phases phi1 and phi2 are restricted to a certain range for m3 < 0.06 eV. We discuss the next-to-leading order corrections which give rise to shifts in the vacuum expectation values of the flavons. These induce deviations from maximal atmospheric mixing and vanishing theta_{13}. It turns out that these deviations are smaller for theta_{23} than for theta_{13}.Comment: 19 pages, 4 figure

    A Model of Fermion Masses and Flavor Mixings with Family Symmetry SU(3)U(1)SU(3)\otimes U(1)

    Full text link
    The family symmetry SU(3)U(1)SU(3)\otimes U(1) is proposed to solve flavor problems about fermion masses and flavor mixings. It's breaking is implemented by some flavon fields at the high-energy scale. In addition a discrete group Z2Z_{2} is introduced to generate tiny neutrino masses, which is broken by a real singlet scalar field at the middle-energy scale. The low-energy effective theory is elegantly obtained after all of super-heavy fermions are integrated out and decoupling. All the fermion mass matrices are regularly characterized by four fundamental matrices and thirteen parameters. The model can perfectly fit and account for all the current experimental data about the fermion masses and flavor mixings, in particular, it finely predicts the first generation quark masses and the values of θ13l\theta^{\,l}_{13} and JCPlJ_{CP}^{\,l} in neutrino physics. All of the results are promising to be tested in the future experiments.Comment: 14 pages, 1 figure, to make a few of corrections to the old version. arXiv admin note: substantial text overlap with arXiv:1011.457

    Lepton Flavor Violation within a realistic SO(10)/G(224) Framework

    Full text link
    Lepton flavor violation (LFV) is studied within a realistic unified framework, based on supersymmetric SO(10) or an effective G(224) = SU(2)_L\times SU(2)_R\times SU(4)^c symmetry, that successfully describes (i) fermion masses and mixings, (ii) neutrino oscillations, as well as (iii) CP violation. LFV emerges as an important prediction of this framework, bringing no new parameters, barring the few SUSY parameters, which are assumed to be flavor-universal at M^*>= M_{GUT}. We study LFV (i.e. \mu -> e\gamma, \tau -> \mu\gamma, \tau -> e\gamma and \mu N -> e N) within this framework by including contributions both from the presence of the right handed neutrinos as well as those arising from renormalization group running in the post-GUT regime (M^* to M_{GUT}). Typically the latter, though commonly omitted in the literature, is found to dominate. Our predicted rates for \mu -> e\gamma show that while some choices of (m_o, m_{1/2}) are clearly excluded by the current empirical limit, this decay should be seen with an improvement of the current sensitivity by a factor of 10--100, even if sleptons are moderately heavy (<= 800 GeV, say). For the same reason, \mu-e conversion (\mu N -> e N) should show in the planned MECO experiment. Implications of WMAP and (g-2)_{\mu}-measurements are noted, as also the significance of the measurement of parity-odd asymmetry in the decay of polarized \mu^+ into e^+ \gamma.Comment: 17 pages, 1 figur

    Probing the seesaw mechanism with neutrino data and leptogenesis

    Get PDF
    In the framework of the seesaw mechanism with three heavy right-handed Majorana neutrinos and no Higgs triplets we carry out a systematic study of the structure of the right-handed neutrino sector. Using the current low-energy neutrino data as an input and assuming hierarchical Dirac-type neutrino masses mDim_{Di}, we calculate the masses MiM_i and the mixing of the heavy neutrinos. We confront the inferred properties of these neutrinos with the constraints coming from the requirement of a successful baryogenesis via leptogenesis. In the generic case the masses of the right-handed neutrinos are highly hierarchical: MimDi2M_i \propto m_{Di}^2; the lightest mass is M1103106M_1 \approx 10^3 - 10^6 GeV and the generated baryon-to-photon ratio ηB1014\eta_B\lesssim 10^{-14} is much smaller than the observed value. We find the special cases which correspond to the level crossing points, with maximal mixing between two quasi-degenerate right-handed neutrinos. Two level crossing conditions are obtained: mee0{m}_{ee}\approx 0 (1-2 crossing) and d120d_{12}\approx 0 (2-3 crossing), where mee{m}_{ee} and d12d_{12} are respectively the 11-entry and the 12-subdeterminant of the light neutrino mass matrix in the basis where the neutrino Yukawa couplings are diagonal. We show that sufficient lepton asymmetry can be produced only in the 1-2 crossing where M1M2108M_1 \approx M_2 \approx 10^{8} GeV, M31014M_3 \approx 10^{14} GeV and (M2M1)/M2105(M_2 - M_1)/ M_2 \lesssim 10^{-5}.Comment: 30 pages, 2 eps figures, JHEP3.cls, typos corrected, note (and references) added on non-thermal leptogenesi

    Neutral Higgs sector of the next-to-minimal supersymmetric standard model with explicit CP violation

    Get PDF
    The neutral Higgs sector of the next-to-minimal supersymmetric standard model (NMSSM) with explicit CP violation is investigated at the 1-loop level, using the effective potential method; not only the loops involving the third generation of quarks and scalar quarks, but also the loops involving WW boson, charged Higgs boson, and chargino are taken into account. It is found that for some parameter values of the NMSSM the contributions from the WW boson, charged Higgs boson, and chargino loops may modify the masses of the neutral Higgs bosons and the mixings among them significantly, depending on the CP phase. In e+ee^+e^- collisions, the prospects for discovering neutral Higgs bosons are investigated within the context of the NMSSM with explicit CP violation when the dominant component of the lightest neutral Higgs boson is the Higgs singlet field of the NMSSM.Comment: Latex, 23 pages, 6 figure
    corecore