2,071 research outputs found

    Oral History Interview: Gregory W. King

    Get PDF
    This interview is one of a series conducted concerning the Marshall University Society of Yeager Scholars. At the time of the interview, Gregory W. King was president of King & Company, Advertising & Public Relations Experts from Lexington, KY. He discusses: his education; work he did at the 20th Century Fox New Talent School; his career in journalism; screenwriting and winning an Oscar; the founding of the Yeager Scholars program; the promotion and development of the Yeager program; individuals such as Carolyn Hunter, Joe Hunnicutt, Dale Nitzschke, & Chuck Yeager; and other topics.https://mds.marshall.edu/oral_history/1376/thumbnail.jp

    Heat shock factor 1 regulates lifespan as distinct from disease onset in prion disease

    Get PDF
    Prion diseases are fatal, transmissible, neurodegenerative diseases caused by the misfolding of the prion protein (PrP). At present, the molecular pathways underlying prion-mediated neurotoxicity are largely unknown. We hypothesized that the transcriptional regulator of the stress response, heat shock factor 1 (HSF1), would play an important role in prion disease. Uninoculated HSF1 knockout (KO) mice used in our study do not show signs of neurodegeneration as assessed by survival, motor performance, or histopathology. When inoculated with Rocky Mountain Laboratory (RML) prions HSF1 KO mice had a dramatically shortened lifespan, succumbing to disease ≈20% faster than controls. Surprisingly, both the onset of home-cage behavioral symptoms and pathological alterations occurred at a similar time in HSF1 KO and control mice. The accumulation of proteinase K (PK)-resistant PrP also occurred with similar kinetics and prion infectivity accrued at an equal or slower rate. Thus, HSF1 provides an important protective function that is specifically manifest after the onset of behavioral symptoms of prion disease

    Multi-disciplinary Collaborations in Measurement of Human Motion

    Get PDF
    Comparative Medicine - OneHealth and Comparative Medicine Poster SessionBioengineering is a broad and rapidly-growing discipline defined as the application of engineering principles to biological systems. Although bioengineering is diverse in nature, the study of human movement is common to many bioengineering subdisciplines such as biomechanics and biometrics. Biomechanics is the science that examines the forces acting upon and within a biological structure and effects produced by such forces [1]. Measurement of ground reaction forces, limb motion, and muscle activation are fundamental research components in musculoskeletal biomechanics. Researchers in this field have used these measurements to quantify human gait, balance, and posture in a multitude of applications including age-related fall risk [2-4], muscle fatigue [5-7], and balance-related pathologies such as Parkinson's disease [8-10], and stroke [11, 12]. Additionally, these measurements play a vital role in computational biomechanics models. For example, the inverse dynamics method incorporates measured ground reaction forces and body motions to calculate the net reaction forces and torques acting on body joints [13]. Biometrics is the science of confirming or discovering individuals' identities based on their specific biological or behavioral traits [14]. Gait is one such modality which can be used for biometric identification. It is based on the uniqueness of an individual's locomotion patterns [15]. In addition, we are interested in high-speed video analyses of micro-saccades and blink reflexes for spoof-proofing of biometric identification systems, biometric identification, and psychometry. We have shown that startle blink intensity can be derived from high- speed video [18], enabling video-based psychophysiological biometrics for detection of subject-specific affective-cognitive information [19]. The Human Motion Laboratory at the University of Missouri - Kansas City is dedicated to measuring the characteristics of human motion. The lab includes a VICON MX 6-camera motion capture system, 4 AMTI OR6-6 force platforms, and a Delsys Myomonitor IV 16-channel wireless EMG system. This equipment represents an experimental infrastructure mutually supporting the biomechanics and biometrics research efforts of four research labs. The scope of these research efforts includes aging, affective computing, psychophysiological biometrics, orthopedics, and human dynamics pathology. The lab capitalizes on a synergistic environment for characterization and measurement of human movement and the interrelated nature of the research activities. The four main research areas that the Human Motion Laboratory supports are: •Computational Biomechanics •Biometrics of Human Motion •Experimental Biomechanics •Body Area Sensor Network

    Measurements and calculations of the Coulomb cross section for the production of direct electron pairs by energetic heavy nuclei in nuclear track emulsion

    Get PDF
    Measurements and theoretical predictions of the Coulomb cross section for the production of direct electron pairs by heavy ions in emulsion have been performed. Nuclear track emulsions were exposed to the 1.8 GeV/amu Fe-56 beam at the Lawrence Berkeley Laboratory bevalac and to the 60 and 200 GeV/amu O-16 and the 200 GeV/amu S-32 beam at the European Center for Nuclear Research Super Proton Synchrotron modified to accelerate heavy ions. The calculations combine the Weizsacker-Williams virtual quanta method applicable to the low-energy transfers and the Kelner-Kotov relativistic treatment for the high-energy transfers. Comparison of the measured total electron pair yield, the energy transfer distribution, and the emission angle distribution with theoretical predictions revealed a discrepancy in the frequency of occurrence of the low-energy pairs (less than or = 10 MeV). The microscope scanning criteria used to identify the direct electron pairs is described and efforts to improve the calculation of the cross section for pair production are also discussed

    Automated optical identification of a large complete northern hemisphere sample of flat spectrum radio sources with S_6cm > 200 mJy

    Full text link
    This paper describes the automated optical APM identification of radio sources from the Jodrell Bank - VLA Astrometric Survey (JVAS), as used for the search for distant radio-loud quasars. The sample has been used to investigate possible relations between optical and radio properties of flat spectrum radio sources. From the 915 sources in the sample, 756 have an optical APM identification at a red (e) and/or blue (o) plate,resulting in an identification fraction of 83% with a completeness and reliability of 98% and 99% respectively. About 20% are optically identified with extended APM objects on the red plates, e.g. galaxies. However the distinction between galaxies and quasars can not be done properly near the magnitude limit of the POSS-I plates. The identification fraction appears to decrease from >90% for sources with a 5 GHz flux density of >1 Jy, to <80% for sources at 0.2 Jy. The identification fraction, in particular that for unresolved quasars, is found to be lower for sources with steeper radio spectra. In agreement with previous studies, we find that the quasars at low radio flux density levels also tend to have fainter optical magnitudes, although there is a large spread. In addition, objects with a steep radio-to-optical spectral index are found to be mainly highly polarised quasars, supporting the idea that in these objects the polarised synchrotron component is more prominent. It is shown that the large spread in radio-to-optical spectral index is possibly caused by source to source variations in the Doppler boosting of the synchrotron component [Abridged].Comment: LaTex, 17 pages, 5 gif figures, 4 tables. Accepted for publication in MNRAS. High resolution figures can be found at http://www.roe.ac.uk/~ignas

    New calculations and measurements of the Coulomb cross-section for the production of direct electron pairs by high energy nuclei

    Get PDF
    Recently, new calculations were made of the direct Coulomb pair cross section that rely less in arbitrary parameters. More accurate calculations of the cross section down to low pair energies were made. New measurements of the total direct electron pair yield, and the energy and angular distribution of the electron pairs in emulsion were made for O-16 at 60 and 200 GeV/amu at S-32 at 200 GeV/amu which give satisfactory agreement with the new calculations. These calculations and measurements are presented along with previous accelerator measurements made of this effect during the last 40 years. The microscope scanning criteria used to identify the direct electron pairs is described. Prospects for application of the pair method to cosmic ray energy measurements in the region 10 (exp 13) to 10 (exp 15) eV/amu are discussed

    Pharmacologic Inhibition of the Anaphase-Promoting Complex Induces A Spindle Checkpoint-Dependent Mitotic Arrest in the Absence of Spindle Damage

    Get PDF
    SummaryMicrotubule inhibitors are important cancer drugs that induce mitotic arrest by activating the spindle assembly checkpoint (SAC), which, in turn, inhibits the ubiquitin ligase activity of the anaphase-promoting complex (APC). Here, we report a small molecule, tosyl-L-arginine methyl ester (TAME), which binds to the APC and prevents its activation by Cdc20 and Cdh1. A prodrug of TAME arrests cells in metaphase without perturbing the spindle, but nonetheless the arrest is dependent on the SAC. Metaphase arrest induced by a proteasome inhibitor is also SAC dependent, suggesting that APC-dependent proteolysis is required to inactivate the SAC. We propose that mutual antagonism between the APC and the SAC yields a positive feedback loop that amplifies the ability of TAME to induce mitotic arrest

    Ubistatins Inhibit Proteasome-Dependent Degradation by Binding the Ubiquitin Chain

    Get PDF
    To identify previously unknown small molecules that inhibit cell cycle machinery, we performed a chemical genetic screen in Xenopus extracts. One class of inhibitors, termed ubistatins, blocked cell cycle progression by inhibiting cyclin B proteolysis and inhibited degradation of ubiquitinated Sic1 by purified proteasomes. Ubistatins blocked the binding of ubiquitinated substrates to the proteasome by targeting the ubiquitin-ubiquitin interface of Lys^(48)-linked chains. The same interface is recognized by ubiquitin-chain receptors of the proteasome, indicating that ubistatins act by disrupting a critical protein-protein interaction in the ubiquitin-proteasome system

    Occupational Exposure to Streptococcus suis among US Swine Workers

    Get PDF
    Despite numerous cases of human infection with Streptococcus suis worldwide, human disease is rarely diagnosed in North America. We studied 73 swine-exposed and 67 non–swine-exposed US adults for antibodies to S. suis serotype 2. Serologic data suggest that human infection with S. suis occurs more frequently than currently documented
    corecore