293 research outputs found

    Outcomes in Pediatric Burn Patients With Additional Trauma-Related Injuries

    Get PDF
    The addition of trauma to burn injuries may result in higher morbidity and mortality. The purpose of this study was to evaluate the outcomes of pediatric patients with a combination of burn and trauma injuries, and included all pediatric Burn only, Trauma only, and combined Burn-Trauma patients admitted between 2011 and 2020. Mean length of stay, ICU length of stay, and ventilator days were highest for the Burn-Trauma group. The odds of mortality were almost 13 times higher for the Burn-Trauma group when compared to the Burn only group (P = .1299). After using inverse probability of treatment weighting, the odds of mortality were almost 10 times higher for the Burn-Trauma group in comparison to the Burn only group (P < .0066). Thus, the addition of trauma to burn injuries was associated with increased odds of mortality, as well as longer ICU and overall hospital length of stay in this patient population

    A Comparative Study of the ReCell® Device and Autologous Spit-Thickness Meshed Skin Graft in the Treatment of Acute Burn Injuries.

    Get PDF
    Early excision and autografting are standard care for deeper burns. However, donor sites are a source of significant morbidity. To address this, the ReCell® Autologous Cell Harvesting Device (ReCell) was designed for use at the point-of-care to prepare a noncultured, autologous skin cell suspension (ASCS) capable of epidermal regeneration using minimal donor skin. A prospective study was conducted to evaluate the clinical performance of ReCell vs meshed split-thickness skin grafts (STSG, Control) for the treatment of deep partial-thickness burns. Effectiveness measures were assessed to 1 year for both ASCS and Control treatment sites and donor sites, including the incidence of healing, scarring, and pain. At 4 weeks, 98% of the ASCS-treated sites were healed compared with 100% of the Controls. Pain and assessments of scarring at the treatment sites were reported to be similar between groups. Significant differences were observed between ReCell and Control donor sites. The mean ReCell donor area was approximately 40 times smaller than that of the Control (P &lt; .0001), and after 1 week, significantly more ReCell donor sites were healed than Controls (P = .04). Over the first 16 weeks, patients reported significantly less pain at the ReCell donor sites compared with Controls (P ≤ .05 at each time point). Long-term patients reported higher satisfaction with ReCell donor site outcomes compared with the Controls. This study provides evidence that the treatment of deep partial-thickness burns with ASCS results in comparable healing, with significantly reduced donor site size and pain and improved appearance relative to STSG

    Mobilizing Crop Biodiversity

    Get PDF
    Over the past 70 years, the world has witnessed extraordinary growth in crop productivity, 1 enabled by a suite of technological advances, including higher yielding crop varieties, improved farm management, synthetic agrochemicals, and agricultural mechanization. While this “Green Revolution” intensified crop production, and is credited with reducing famine and malnutrition, its benefits were accompanied by several undesirable collateral effects (Pingali, 2012). These include a narrowing of agricultural biodiversity, stemming from increased monoculture and greater reliance on a smaller number of crops and crop varieties for the majority of our calories. This reduction in diversity has created vulnerabilities to pest and disease epidemics, climate variation, and ultimately to human health (Harlan, 1972). The value of crop diversity has long been recognized (Vavilov, 1992). A global system of genebanks (e.g.www.genebanks.org/genebanks/) was established in the 1970s to preserve the abundant genetic variation found in traditional “landrace” varieties of crops and in crop wild relatives (Harlan, 1972). While preserving crop variation is a critical first step, the time has come to make use of this variation to breed more resilient crops. The DivSeek International Network (https://divseekintl.org/) is a scientific, not-for profit organization that aims to accelerate such effort

    LIGO’s quantum response to squeezed states

    Get PDF
    Gravitational Wave interferometers achieve their profound sensitivity by combining a Michelson interferometer with optical cavities, suspended masses, and now, squeezed quantum states of light. These states modify the measurement process of the LIGO, VIRGO and GEO600 interferometers to reduce the quantum noise that masks astrophysical signals; thus, improvements to squeezing are essential to further expand our gravitational view of the universe. Further reducing quantum noise will require both lowering decoherence from losses as well more sophisticated manipulations to counter the quantum back-action from radiation pressure. Both tasks require fully understanding the physical interactions between squeezed light and the many components of km-scale interferometers. To this end, data from both LIGO observatories in observing run three are expressed using frequency-dependent metrics to analyze each detector's quantum response to squeezed states. The response metrics are derived and used to concisely describe physical mechanisms behind squeezing's simultaneous interaction with transverse-mode selective optical cavities and the quantum radiation pressure noise of suspended mirrors. These metrics and related analysis are broadly applicable for cavity-enhanced optomechanics experiments that incorporate external squeezing, and -- for the first time -- give physical descriptions of every feature so far observed in the quantum noise of the LIGO detectors

    Point absorbers in Advanced LIGO

    Get PDF
    Small, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nano-meter scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduces the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power build-up in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers). This analysis predicts that the power-dependent reduction in interferometer performance will significantly degrade maximum stored power by up to 50% and hence, limit GW sensitivity, but suggests system wide corrections that can be implemented in current and future GW detectors. This is particularly pressing given that future GW detectors call for an order of magnitude more stored power than currently used in Advanced LIGO in Observing Run 3. We briefly review strategies to mitigate the effects of point absorbers in current and future GW wave detectors to maximize the success of these enterprises

    Quantum correlations between the light and kilogram-mass mirrors of LIGO

    Get PDF
    Measurement of minuscule forces and displacements with ever greater precision encounters a limit imposed by a pillar of quantum mechanics: the Heisenberg uncertainty principle. A limit to the precision with which the position of an object can be measured continuously is known as the standard quantum limit (SQL). When light is used as the probe, the SQL arises from the balance between the uncertainties of photon radiation pressure imposed on the object and of the photon number in the photoelectric detection. The only possibility surpassing the SQL is via correlations within the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light it reflects. Here, we experimentally prove the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). Our measurements show that the quantum mechanical uncertainties in the phases of the 200 kW laser beams and in the positions of the 40 kg mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty a factor of 1.4 (3dB) below the SQL. We anticipate that quantum correlations will not only improve gravitational wave (GW) observatories but all types of measurements in future

    Quantum correlations between light and the kilogram-mass mirrors of LIGO

    Get PDF
    The measurement of minuscule forces and displacements with ever greater precision is inhibited by the Heisenberg uncertainty principle, which imposes a limit to the precision with which the position of an object can be measured continuously, known as the standard quantum limit. When light is used as the probe, the standard quantum limit arises from the balance between the uncertainties of the photon radiation pressure applied to the object and of the photon number in the photoelectric detection. The only way to surpass the standard quantum limit is by introducing correlations between the position/momentum uncertainty of the object and the photon number/phase uncertainty of the light that it reflects. Here we confirm experimentally the theoretical prediction that this type of quantum correlation is naturally produced in the Laser Interferometer Gravitational-wave Observatory (LIGO). We characterize and compare noise spectra taken without squeezing and with squeezed vacuum states injected at varying quadrature angles. After subtracting classical noise, our measurements show that the quantum mechanical uncertainties in the phases of the 200-kilowatt laser beams and in the positions of the 40-kilogram mirrors of the Advanced LIGO detectors yield a joint quantum uncertainty that is a factor of 1.4 (3 decibels) below the standard quantum limit. We anticipate that the use of quantum correlations will improve not only the observation of gravitational waves, but also more broadly future quantum noise-limited measurements
    corecore