73 research outputs found

    Tunka Advanced Instrument for cosmic rays and Gamma Astronomy

    Full text link
    The paper is a script of a lecture given at the ISAPP-Baikal summer school in 2018. The lecture gives an overview of the Tunka Advanced Instrument for cosmic rays and Gamma Astronomy (TAIGA) facility including historical introduction, description of existing and future setups, and outreach and open data activities.Comment: Lectures given at the ISAPP-Baikal Summer School 2018: Exploring the Universe through multiple messengers, 12-21 July 2018, Bol'shie Koty, Russi

    Measurements of the energy deposit of inclined muon bundles in the CWD NEVOD

    Get PDF
    First results of investigations of the energy deposits of inclined muon bundles in the ground-based Cherenkov water detector NEVOD are presented. As a measure of the muon bundle energy deposit, the total number of photoelectrons detected by PMTs of the Cherenkov calorimeter is used. For each event, the local muon density at the observation point and the muon bundle arrival direction are estimated from the data of the coordinate-tracking detector DECOR. Registration of the bundles in a wide range of zenith angles allows to explore the interval of primary particle energies from ̃ 1016 to ̃ 1018 eV. Measurement results are compared with CORSIKA based simulations of EAS muon component. It is found that the mean energy of muons detected in the bundles rapidly increases with the zenith angle and reaches about 500 GeV near the horizon

    EAS array of the NEVOD Experimental Complex

    Get PDF
    A new setup for registration of the electromagnetic component of the EAS at the “knee” region of the energy spectrum of primary cosmic rays (PCR) is now under construction on the basis of the experimental complex NEVOD-DECOR (Moscow, Russia). The EAS array detecting system has a cluster organization. Clusters are located in the MEPhI campus. The specific features of the array registering system that provides particle detection, data acquisition, cluster synchronization and events selection are discussed. The results of counter characteristics study are also presented

    Method of Separation Between Light and Heavy Groups of Primary CR Nuclei by LDF of Cherenkov Light in the Range 300–3000 TeV

    Get PDF
    The problem of chemical composition below the knee in the cosmic-ray energy spectrum has not yet been solved due to low statistics collected from direct experiments. In the HiSCORE experiment the lateral distribution functions (LDF) of Cherenkov light of EASs with energy greater than hundreds of TeV can be measured in detail for millions of individual events. A full steepness of LDF is sensitive to the depth of shower maximum and as a result to primary particle type. In this paper, we developed a parametric method of separation between heavy and light groups of nuclei using the ’knee-like’ approximation of LDF and taking into account measurement uncertainty

    The precision of the IACT mechanical mounts of the TAIGA observatory

    Get PDF
    The TAIGA (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) observatory is located in the Tunka valley (~50 km west from the southern shore of Lake Baikal) at an altitude of 675m a.s.l. The TAIGA observatory aims to address gamma-ray astronomy at energies from a few TeV to several PeV and CR physics from 100 TeV to several EeV. Its main feature is the complementary, hybrid approach to distinguish CR events from those of gamma rays. Currently TAIGA consists of ~80 wide-angle air Cherenkov detectors (HiSCORE stations), three ~4m diameter IACTs and several hundred surface and underground muon detectors, grouped in three jointly operating arrays. The exceptional feature of the TAIGA IACT array is it’s topology that allows one to aim for the optimal cost/performance by scanning the optimal inter-telescope distances from 300m up to 600m. The IACTs have alt-azimuth type mounts and 576-pixel imaging cameras in the foci, covering 9.6° aperture in the sky. The segmented reflectors of ~10m² area follow the Davis-Cotton design. The largest diameter of the hexagonal shape reflector is 4.3m and the focal length is 4.75m. The rigid telescope mount provides a maximum displacement of EAS image below 2mm (i.e. ≤ 0.024°) in the photodetector plane. The main parameters of IACTs are of a crucial importance for their efficient operation and is presented

    Investigation of cascade showers in the Cherenkov water detector NEVOD

    Get PDF
    A technique for the reconstruction of cascade profiles by means of Cherenkov radiation in the water of the NEVOD detector is discussed. NEVOD is equipped with a dense spatial lattice of optical modules. The analyzed cascades have been generated either along near-horizontal muons (zenith angles between 85 and 90°), which's tracks are reconstructed by means of the tracking detector DECOR, or by muons with unknown tracks over a wider zenith angle range of 50-90°. Mean cascade profiles and energy spectra of cascades measured during the experimental series of about 7950 hours of 'live time' are presented

    TAIGA -- an advanced hybrid detector complex for astroparticle physics and high energy gamma-ray astronomy

    Full text link
    The physical motivations, present status, main results in study of cosmic rays and in the field of gamma-ray astronomy as well future plans of the TAIGA-1 (Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy) project are presented. The TAIGA observatory addresses ground-based gamma-ray astronomy and astroparticle physics at energies from a few TeV to several PeV, as well as cosmic ray physics from 100 TeV to several EeV. The pilot TAIGA-1 complex is located in the Tunka valley, ~50 km west from the southern tip of the lake Baikal.Comment: Submission to SciPost Phys. Proc., 10 pages, 2 figure

    Primary Cosmic Rays Energy Spectrum and Mean Mass Composition by the Data of the TAIGA Astrophysical Complex

    Full text link
    The corrected dependence of the mean depth of the EAS maximum XmaxX_{max} on the energy was obtained from the data of the Tunka-133 array for 7 years and the TAIGA-HiSCORE array for 2 year. The parameter lnA\langle\ln A\rangle, characterizing the mean mass compositon was derived from these results. The differential energy spectrum of primary cosmic rays in the energy range of 210142\cdot 10^{14} - 210162\cdot 10^{16}\,eV was reconstructed using the new parameter Q100Q_{100} the Cherenkov light flux at the core distance 100 m.}Comment: 6 pages, 3 figures, Submitted to SciPost Phys.Pro
    corecore