240 research outputs found
Metabolic Changes Precede the Development of Pulmonary Hypertension in the Monocrotaline Exposed Rat Lung.
There is increasing interest in the potential for metabolic profiling to evaluate the progression of pulmonary hypertension (PH). However, a detailed analysis of the metabolic changes in lungs at the early stage of PH, characterized by increased pulmonary artery pressure but prior to the development of right ventricle hypertrophy and failure, is lacking in a preclinical animal model of PH. Thus, we undertook a study using rats 14 days after exposure to monocrotaline (MCT), to determine whether we could identify early stage metabolic changes prior to the manifestation of developed PH. We observed changes in multiple pathways associated with the development of PH, including activated glycolysis, increased markers of proliferation, disruptions in carnitine homeostasis, increased inflammatory and fibrosis biomarkers, and a reduction in glutathione biosynthesis. Further, our global metabolic profile data compare favorably with prior work carried out in humans with PH. We conclude that despite the MCT-model not recapitulating all the structural changes associated with humans with advanced PH, including endothelial cell proliferation and the formation of plexiform lesions, it is very similar at a metabolic level. Thus, we suggest that despite its limitations it can still serve as a useful preclinical model for the study of PH
Risk of Visual Impairment and Intracranial Hypertension After Space Flight: Evaluation of the Role of Polymorphism of Enzymes Involved in One-Carbon Metabolism
Data from the Nutritional Status Assessment protocol provided biochemical evidence that the one-carbon metabolic pathway may be altered in individuals experiencing vision-related issues during and after space flight (1, 2). Briefly, serum concentrations of homocysteine, cystathionine, 2-methylcitric acid, and methylmalonic acid were significantly (P<0.001) higher (25-45%) in astronauts with ophthalmic changes than in those without such changes (1). These differences existed before, during, and after flight. Serum folate was lower (P<0.01) during flight in individuals with ophthalmic changes. Preflight serum concentrations of cystathionine and 2-methylcitric acid, and mean in-flight serum folate, were significantly (P<0.05) correlated with postflight changes in refraction (1). A follow-up study was conducted to evaluate a small number of known polymorphisms of enzymes in the one-carbon pathway, and to evaluate how these relate to vision and other medical aspects of the eye. Specifically, we investigated 5 polymorphisms in MTRR, MTHFR, SHMT, and CBS genes and their association with ophthalmic changes after flight in 49 astronauts. The number of G alleles of MTRR 66 and C alleles of SHMT1 1420 both contributed to the odds of visual disturbances (3). Block regression showed that B-vitamin status at landing and genetics were significant predictors for many of the ophthalmic outcomes studied (3). In conclusion, we document an association between MTRR 66 and SHMT1 1420 polymorphisms and space flightinduced vision changes. These data document that individuals with an altered 1-carbon metabolic pathway may be predisposed to anatomic and/or physiologic changes that render them susceptible to ophthalmic damage during space flight
A Conserved Role for SNX9-Family Members in the Regulation of Phagosome Maturation during Engulfment of Apoptotic Cells
Clearance of apoptotic cells is of key importance during development, tissue homeostasis and wound healing in multi-cellular animals. Genetic studies in the nematode Caenorhabditis elegans have identified a set of genes involved in the early steps of cell clearance, in particular the recognition and internalization of apoptotic cells. A pathway that orchestrates the maturation of phagosomes containing ingested apoptotic cells in the worm has recently been described. However, many steps in this pathway remain elusive. Here we show that the C. elegans SNX9-family member LST-4 (lateral signaling target) and its closest mammalian orthologue SNX33 play an evolutionary conserved role during apoptotic cell corpse clearance. In lst-4 deficient worms, internalized apoptotic cells accumulated within non-acidified, DYN-1-positive but RAB-5-negative phagosomes. Genetically, we show that LST-4 functions at the same step as DYN-1 during corpse removal, upstream of the GTPase RAB-5. We further show that mammalian SNX33 rescue C. elegans lst-4 mutants and that overexpression of truncated SNX33 fragments interfered with phagosome maturation in a mammalian cell system. Taken together, our genetic and cell biological analyses suggest that LST-4 is recruited through a combined activity of DYN-1 and VPS-34 to the early phagosome membrane, where it cooperates with DYN-1 to promote recruitment/retention of RAB-5 on the early phagosomal membrane during cell corpse clearance. The functional conservation between LST-4 and SNX33 indicate that these early steps of apoptotic phagosome maturation are likely conserved through evolution
Reverberation Mapping of the Kepler-Field AGN KA1858+4850
KA1858+4850 is a narrow-line Seyfert 1 galaxy at redshift 0.078 and is among
the brightest active galaxies monitored by the Kepler mission. We have carried
out a reverberation mapping campaign designed to measure the broad-line region
size and estimate the mass of the black hole in this galaxy. We obtained 74
epochs of spectroscopic data using the Kast Spectrograph at the Lick 3-m
telescope from February to November of 2012, and obtained complementary V-band
images from five other ground-based telescopes. We measured the H-beta light
curve lag with respect to the V-band continuum light curve using both
cross-correlation techniques (CCF) and continuum light curve variability
modeling with the JAVELIN method, and found rest-frame lags of lag_CCF = 13.53
(+2.03, -2.32) days and lag_JAVELIN = 13.15 (+1.08, -1.00) days. The H-beta
root-mean-square line profile has a width of sigma_line = 770 +/- 49 km/s.
Combining these two results and assuming a virial scale factor of f = 5.13, we
obtained a virial estimate of M_BH = 8.06 (+1.59, -1.72) x 10^6 M_sun for the
mass of the central black hole and an Eddington ratio of L/L_Edd ~ 0.2. We also
obtained consistent but slightly shorter emission-line lags with respect to the
Kepler light curve. Thanks to the Kepler mission, the light curve of
KA1858+4850 has among the highest cadences and signal-to-noise ratios ever
measured for an active galactic nucleus; thus, our black hole mass measurement
will serve as a reference point for relations between black hole mass and
continuum variability characteristics in active galactic nuclei
Two PI 3-Kinases and One PI 3-Phosphatase Together Establish the Cyclic Waves of Phagosomal PtdIns(3)P Critical for the Degradation of Apoptotic Cells
Cyclic oscillations in the level of phosphatidylinositol 3-phosphate in phagosomes, regulated by two phosphoinositide kinases and one phosphatase, are critical for phagosome maturation and degradation of apoptotic cells
Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration.
Cell migration is essential throughout embryonic and adult life. In numerous cell systems, the small GTPase Rac is required for lamellipodia formation at the leading edge and movement ability. However, the molecular mechanisms leading to Rac activation during migration are still unclear. Recently, a mammalian superfamily of proteins related to the prototype member Dock180 has been identified with homologues in Drosophila and Caenorhabditis elegans. Here, we addressed the role of Dock180 and ELMO1 proteins, which function as a complex to mediate Rac activation, in mammalian cell migration. Using mutants of Dock180 and ELMO1 in a Transwell assay as well as transgenic rescue of a C. elegans mutant lacking CED-5 (Dock180 homologue), we identified specific regions of Dock180 and ELMO1 required for migration in vitro and in a whole animal model. In both systems, the Dock180.ELMO1 complex formation and the ability to activate Rac were required. We also found that ELMO1 regulated multiple Dock180 superfamily members to promote migration. Interestingly, deletion mutants of ELMO1 missing their first 531 or first 330 amino acids that can still bind and cooperate with Dock180 in Rac activation failed to promote migration, which correlated with the inability to localize to lamellipodia. This finding suggests that Rac activation by the ELMO.Dock180 complex at discrete intracellular locations mediated by the N-terminal 330 amino acids of ELMO1 rather than generalized Rac activation plays a role in cell migration
A systematic review of patient and health system characteristics associated with late referral in chronic kidney disease
<p>Abstract</p> <p>Background</p> <p>To identify patient and health system characteristics associated with late referral of patients with chronic kidney disease to nephrologists.</p> <p>Methods</p> <p>MEDLINE, CENTRAL, and CINAHL were searched using the appropriate MESH terms in March 2007. Two reviewers individually and in duplicate reviewed the abstracts of 256 articles and selected 18 observational studies for inclusion. The reasons for late referral were categorized into patient or health system characteristics. Data extraction and content appraisal were done using a prespecified protocol.</p> <p>Results</p> <p>Older age, the existence of multiple comorbidities, race other than Caucasian, lack of insurance, lower socioeconomic status and educational levels were patient characteristics associated with late referral of patients with chronic kidney disease. Lack of referring physician knowledge about the appropriate timing of referral, absence of communication between referring physicians and nephrologists, and dialysis care delivered at tertiary medical centers were health system characteristics associated with late referral of patients with chronic kidney disease. Most studies identified multiple factors associated with late referral, although the relative importance and the combined effect of these factors were not systematically evaluated.</p> <p>Conclusion</p> <p>A combination of patient and health system characteristics is associated with late referral of patients with chronic kidney disease. Overall, being older, belonging to a minority group, being less educated, being uninsured, suffering from multiple comorbidities, and the lack of communication between primary care physicians and nephrologists contribute to late referral of patients with chronic kidney disease. Both primary care physicians and nephrologists need to engage in multisectoral collaborative efforts that ensure patient education and enhance physician awareness to improve the care of patients with chronic kidney disease.</p
Caenorhabditis elegans Myotubularin MTM-1 Negatively Regulates the Engulfment of Apoptotic Cells
During programmed cell death, apoptotic cells are recognized and rapidly engulfed by phagocytes. Although a number of genes have been identified that promote cell corpse engulfment, it is not well understood how phagocytosis of apoptotic cells is negatively regulated. Here we have identified Caenorhabditis elegans myotubularin MTM-1 as a negative regulator of cell corpse engulfment. Myotubularins (MTMs) constitute a large, highly conserved family of lipid phosphatases. MTM gene mutations are associated with various human diseases, but the cellular functions of MTM proteins are not clearly defined. We found that inactivation of MTM-1 caused significant reduction in cell corpses in strong loss-of-function mutants of ced-1, ced-6, ced-7, and ced-2, but not in animals deficient in the ced-5, ced-12, or ced-10 genes. In contrast, overexpression of MTM-1 resulted in accumulation of cell corpses. This effect is dependent on the lipid phosphatase activity of MTM-1. We show that loss of mtm-1 function accelerates the clearance of cell corpses by promoting their internalization. Importantly, the reduction of cell corpses caused by mtm-1 RNAi not only requires the activities of CED-5, CED-12, and CED-10, but also needs the functions of the phosphatidylinositol 3-kinases (PI3Ks) VPS-34 and PIKI-1. We found that MTM-1 localizes to the plasma membrane in several known engulfing cell types and may modulate the level of phosphatidylinositol 3-phosphate (PtdIns(3)P) in vivo. We propose that MTM-1 negatively regulates cell corpse engulfment through the CED-5/CED-12/CED-10 module by dephosphorylating PtdIns(3)P on the plasma membrane
Comparative Performance Information Plays No Role in the Referral Behaviour of GPs
Comparative performance information (CPI) about the quality of hospital care is information used to identify high-quality hospitals and providers. As the gatekeeper to secondary care, the general practitioner (GP) can use CPI to reflect on the pros and cons of the available options with the patient and choose a provider best fitted to the patientβs needs. We investigated how GPs view their role in using CPI to choose providers and support patients.
Method: We used a mixed-method, sequential, exploratory design to conduct explorative interviews with 15 GPs about their referral routines, methods of referral consideration, patient involvement, and the role of CPI. Then we quantified the qualitative results by sending a survey questionnaire to 81 GPs affiliated with a representative national research network.
Results: Seventy GPs (86% response rate) filled out the questionnaire. Most GPs did not know where to find CPI (87%) and had never searched for it (94%). The GPs reported that they were not motivated to use CPI due to doubts about its role as support information, uncertainty about the effect of using CPI, lack of faith in better outcomes, and uncertainty about CPI content and validity. Nonetheless, most GPs believed that patients would like to be informed about quality-of- care differences (62%), and about half the GPs discussed quality-of-care differences with their patients (46%), though these discussions were not based on CPI.
Conclusion: Decisions about referrals to hospital care are not based on CPI exchanges during GP consultations. As a gatekeeper, the GP is in a good position to guide patients through the enormous amount of quality information that is available. Nevertheless, it is unclear how and whether the GPβs role in using information about quality of care in the referral process can grow, as patients hardly ever initiate a discussion based on CPI, though they seem to be increasingly more critical about differences in quality of care. Future research should address the conditions needed to support GPsβ ability and willingness to use CPI to guide their patients in the referral process
- β¦