150 research outputs found

    Bacteria Source Tracking to Support Watershed Planning, Little Sac River, Southwest Missouri

    Get PDF
    The Little Sac Watershed in Greene and Polk Counties of southwest Missouri was placed on the 303d list for bacteria impairment in 1998 (WCO 2016). In 2006, a Total Maximum Daily Load (TMDL) was developed for the watershed to address bacteria impairments within the Little Sac River and an initial watershed management plan was finalized in 2010 (Baffaut 2006, WCO 2009). The Watershed Committee of the Ozarks (WCO) is presently updating that plan with the most recent information on bacteria within the watershed. As part of that process, the WCO has contracted the Ozarks Environmental and Water Resources Institute (OEWRI) at Missouri State University (MSU) to complete a bacteria source tracking study within the watershed to identify potential bacteria pollution sources. The purpose of this study is to collect water samples throughout the watershed and evaluate bacteria DNA using real-time PCR for specific marker genes that can help identify specific bacteria sources from different locations in the Little Sac River watershed

    Data Assimilation using a GPU Accelerated Path Integral Monte Carlo Approach

    Full text link
    The answers to data assimilation questions can be expressed as path integrals over all possible state and parameter histories. We show how these path integrals can be evaluated numerically using a Markov Chain Monte Carlo method designed to run in parallel on a Graphics Processing Unit (GPU). We demonstrate the application of the method to an example with a transmembrane voltage time series of a simulated neuron as an input, and using a Hodgkin-Huxley neuron model. By taking advantage of GPU computing, we gain a parallel speedup factor of up to about 300, compared to an equivalent serial computation on a CPU, with performance increasing as the length of the observation time used for data assimilation increases.Comment: 5 figures, submitted to Journal of Computational Physic

    Obesity Accelerates Acute Promyelocytic Leukemia in Mice and Reduces Sex Differences in Latency and Penetrance

    Get PDF
    Objective: Obesity has emerged as a prominent risk factor for multiple serious disease states, including a variety of cancers, and is increasingly recognized as a primary contributor to preventable cancer risk. However, few studies of leukemia have been conducted in animal models of obesity. This study sought to characterize the impact of obesity, diet, and sex in a murine model of acute promyelocytic leukemia (APL). Methods: Male and female C57BL/6J.mCG+/PR mice, genetically predisposed to sporadic APL development, and C57BL/6J (wild type) mice were placed on either a high-fat diet (HFD) or a low-fat diet (LFD) for up to 500 days. Results: Relative to LFD-fed mice, HFD-fed animals displayed increased disease penetrance and shortened disease latency as indicated by accelerated disease onset. In addition, a diet-responsive sex difference in APL penetrance and incidence was identified, with LFD-fed male animals displaying increased penetrance and shortened latency relative to female counterparts. In contrast, both HFD-fed male and female mice displayed 100% disease penetrance and insignificant differences in disease latency, indicating that the sexual dimorphism was reduced through HFD feeding. Conclusions: Obesity and obesogenic diet promote the development of APL in vivo, reducing sexual dimorphisms in disease latency and penetrance

    The Murchison Widefield Array: Design Overview

    Get PDF
    The Murchison Widefield Array (MWA) is a dipole-based aperture array synthesis telescope designed to operate in the 80-300 MHz frequency range. It is capable of a wide range of science investigations, but is initially focused on three key science projects. These are detection and characterization of 3-dimensional brightness temperature fluctuations in the 21cm line of neutral hydrogen during the Epoch of Reionization (EoR) at redshifts from 6 to 10, solar imaging and remote sensing of the inner heliosphere via propagation effects on signals from distant background sources,and high-sensitivity exploration of the variable radio sky. The array design features 8192 dual-polarization broad-band active dipoles, arranged into 512 tiles comprising 16 dipoles each. The tiles are quasi-randomly distributed over an aperture 1.5km in diameter, with a small number of outliers extending to 3km. All tile-tile baselines are correlated in custom FPGA-based hardware, yielding a Nyquist-sampled instantaneous monochromatic uv coverage and unprecedented point spread function (PSF) quality. The correlated data are calibrated in real time using novel position-dependent self-calibration algorithms. The array is located in the Murchison region of outback Western Australia. This region is characterized by extremely low population density and a superbly radio-quiet environment,allowing full exploitation of the instrumental capabilities.Comment: 9 pages, 5 figures, 1 table. Accepted for publication in Proceedings of the IEE

    Renal artery stenosis-when to screen, what to stent?

    Get PDF
    Renal artery stensosis (RAS) continues to be a problem for clinicians, with no clear consensus on how to investigate and assess the clinical significance of stenotic lesions and manage the findings. RAS caused by fibromuscular dysplasia is probably commoner than previously appreciated, should be actively looked for in younger hypertensive patients and can be managed successfully with angioplasty. Atheromatous RAS is associated with increased incidence of cardiovascular events and increased cardiovascular mortality, and is likely to be seen with increasing frequency. Evidence from large clinical trials has led clinicians away from recommending interventional revascularisation towards aggressive medical management. There is now interest in looking more closely at patient selection for intervention, with focus on intervening only in patients with the highest-risk presentations such as flash pulmonary oedema, rapidly declining renal function and severe resistant hypertension. The potential benefits in terms of improving hard cardiovascular outcomes may outweigh the risks of intervention in this group, and further research is needed

    Simultaneous noninvasive recording of skin sympathetic nerve activity and electrocardiogram

    Get PDF
    BACKGROUND: Sympathetic nerve activity is important to cardiac arrhythmogenesis. OBJECTIVE: The purpose of this study was to develop a method for simultaneous noninvasive recording of skin sympathetic nerve activity (SKNA) and electrocardiogram (ECG) using conventional ECG electrodes. This method (neuECG) can be used to adequately estimate sympathetic tone. METHODS: We recorded neuECG signals from the skin of 56 human subjects. The signals were low-pass filtered to show the ECG and high-pass filtered to show nerve activity. Protocol 1 included 12 healthy volunteers who underwent cold water pressor test and Valsalva maneuver. Protocol 2 included 19 inpatients with epilepsy but without known heart diseases monitored for 24 hours. Protocol 3 included 22 patients admitted with electrical storm and monitored for 39.0 ± 28.2 hours. Protocol 4 included 3 patients who underwent bilateral stellate ganglion blockade with lidocaine injection. RESULTS: In patients without heart diseases, spontaneous nerve discharges were frequently observed at baseline and were associated with heart rate acceleration. SKNA recorded from chest leads (V1-V6) during cold water pressor test and Valsalva maneuver (protocol 1) was invariably higher than during baseline and recovery periods (P < .001). In protocol 2, the average SKNA correlated with heart rate acceleration (r = 0.73 ± 0.14, P < .05) and shortening of QT interval (P < .001). Among 146 spontaneous ventricular tachycardia episodes recorded in 9 patients of protocol 3, 106 episodes (73%) were preceded by SKNA within 30 seconds of onset. Protocol 4 showed that bilateral stellate ganglia blockade by lidocaine inhibited SKNA. CONCLUSION: SKNA is detectable using conventional ECG electrodes in humans and may be useful in estimating sympathetic tone

    Renal outcome in adults with renal insufficiency and irregular asymmetric kidneys

    Get PDF
    BACKGROUND: The commonest cause of end-stage renal failure (ESRF) in children and young adults is congenital malformation of the kidney and urinary tract. In this retrospective review, we examine whether progression to ESRF can be predicted and whether treatment with angiotensin converting enzyme inhibitors (ACEI) can delay or prevent this. METHODS: We reviewed 78 patients with asymmetric irregular kidneys as a consequence of either primary vesico-ureteric reflux or renal dysplasia (Group 1, n = 44), or abnormal bladder function (Group 2, n = 34). Patients (median age 24 years) had an estimated GFR (eGFR) < 60 ml/min/1.73 m(2 )with at least 5 years of follow up (median 143 months). 48 patients received ACEI. We explored potential prognostic factors that affect the time to ESRF using Cox-regression analyses. RESULTS: At start, mean (SE) creatinine was 189 (8) μmol/l, mean eGFR 41 (1) ml/min 1.73 m(2), mean proteinuria 144 (14) mg/mmol creatinine (1.7 g/24 hrs). Of 78 patients, 36 (46%) developed ESRF, but none of 19 with proteinuria less than 50 mg/mmol and only two of 18 patients with eGFR above 50 ml/min did so. Renal outcome between Groups 1 and 2 appeared similar with no evidence for a difference. A benefit in favour of treatment with ACEI was observed above an eGFR of 40 ml/min (p = 0.024). CONCLUSION: The similar outcome of the two groups supports the nephrological nature of progressive renal failure in young men born with abnormal bladders. There is a watershed GFR of 40–50 ml/min at which ACEI treatment can be successful at improving renal outcome

    Low-Frequency Observations of the Moon with the Murchison Widefield Array

    Get PDF
    A new generation of low-frequency radio telescopes is seeking to observe the redshifted 21 cm signal from the epoch of reionization (EoR), requiring innovative methods of calibration and imaging to overcome the difficulties of wide-field low-frequency radio interferometry. Precise calibration will be required to separate the expected small EoR signal from the strong foreground emission at the frequencies of interest between 80 and 300 MHz. The Moon may be useful as a calibration source for detection of the EoR signature, as it should have a smooth and predictable thermal spectrum across the frequency band of interest. Initial observations of the Moon with the Murchison Widefield Array 32 tile prototype show that the Moon does exhibit a similar trend to that expected for a cool thermally emitting body in the observed frequency range, but that the spectrum is corrupted by reflected radio emission from Earth. In particular, there is an abrupt increase in the observed flux density of the Moon within the internationally recognized frequency modulated (FM) radio band. The observations have implications for future low-frequency surveys and EoR detection experiments that will need to take this reflected emission from the Moon into account. The results also allow us to estimate the equivalent isotropic power emitted by the Earth in the FM band and to determine how bright the Earth might appear at meter wavelengths to an observer beyond our own solar system

    First spectroscopic imaging observations of the sun at low radio frequencies with the Murchison Widefield Array Prototype

    Get PDF
    We present the first spectroscopic images of solar radio transients from the prototype for the Murchison Widefield Array, observed on 2010 March 27. Our observations span the instantaneous frequency band 170.9- 201.6 MHz. Though our observing period is characterized as a period of "low" to "medium" activity, one broadband emission feature and numerous short-lived, narrowband, non-thermal emission features are evident. Our data represent a significant advance in low radio frequency solar imaging, enabling us to follow the spatial, spectral, and temporal evolution of events simultaneously and in unprecedented detail. The rich variety of features seen here reaffirms the coronal diagnostic capability of low radio frequency emission and provides an early glimpse of the nature of radio observations that will become available as the next generation of low-frequency radio interferometers come online over the next few years
    corecore