172 research outputs found
Performance assessment of a NaI(Tl) gamma counter for PET applications with methods for improved quantitative accuracy and greater standardization
BACKGROUND: Although NaI(Tl) gamma counters play an important role in many quantitative positron emission tomography (PET) protocols, their calibration for positron-emitting samples has not been standardized across imaging sites. In this study, we characterized the operational range of a gamma counter specifically for positron-emitting radionuclides, and we assessed the role of traceable (68)Ge/(68)Ga sources for standardizing system calibration. METHODS: A NaI(Tl) gamma counter was characterized with respect to count rate performance, adequacy of detector shielding, system stability, and sample volume effects using positron-emitting radionuclides (409- to 613-keV energy window). System efficiency was measured using (18)F and compared with corresponding data obtained using a long-lived (68)Ge/(68)Ga source that was implicitly traceable to a national standard. RESULTS: One percent count loss was measured at 450 × 10(3) counts per minute. Penetration of the detector shielding by 511-keV photons gave rise to a negligible background count rate. System stability tests showed a coefficient of variation of 0.13% over 100 days. For a sample volume of 4 mL, the efficiencies relative to those at 0.1 mL were 0.96, 0.94, 0.91, 0.78, and 0.72 for (11)C, (18)F, (125)I, (99m)Tc, and (51)Cr, respectively. The efficiency of a traceable (68)Ge/(68)Ga source was 30.1% ± 0.07% and was found to be in close agreement with the efficiency for (18)F after consideration of the different positron fractions. CONCLUSIONS: Long-lived (68)Ge/(68)Ga reference sources, implicitly traceable to a national metrology institute, can aid standardization of gamma counter calibration for (18)F. A characteristic feature of positron emitters meant that accurate calibration could be maintained over a wide range of sample volumes by using a narrow energy window centered on the 511-keV peak
Accuracy of CT-based attenuation correction in bone imaging with PET/CT
Proceeding of: 2007 IEEE Nuclear Science Symposium Conference Record (NSS'07), Honolulu, Hawaii, USA, Oct. 27 - Nov. 3, 2007PET/CT has become the most comprehensive
diagnostic tool in oncology imaging providing improved lesion identification and localization. Bone is a common site of
metastasis and the quantitative accuracy of PET images in bone tissue is important for assessing response to therapy. The use of
CT images for attenuation correction is becoming a standard procedure in these scanners. However the impact of CT-based
attenuation correction (CTAC) on the accuracy of PET tracer uptake values measured in bone has not been carefully evaluated, having only been carefully studied in soft tissue.
We investigated the accuracy of CTAC on PET bone images by comparing the attenuation coefficients with PET transmission
scans. For this, we imaged frozen bovine femur segments in a 20x20 cm cylindrical phantom. Different regions of the bones in
both images were segmented by using thresholding and erosion methods to get equivalent volume masks. Differences in linear attenuation coefficients between the two images were then calculated. We repeated this analysis using patient images from
the same patient imaged on the GE Advance PET scanner and the GE Discovery STE PET/CT scanner.
The impact of the errors in the linear attenuation coefficients
on PET SUV measurements was evaluated by simulations using
the patent images with known bone disease and elevated levels of FDG uptake in bone (e.g. SUV = 5) at disease sites. The impact of the errors in the linear attenuation coefficients was then estimated by forward projection and reconstruction, after including the effects of attenuation and attenuation correction.This work was supported in kart by Agencia Antidroga de la Comunidad de Madrid (S-SAL2007), Ministerio de Sanidad y Consumo (CIBER CB06/01/0079), and Ministerio de Industria
(Programa CENIT). It was also supported in part by NIH grants R01-
CA124573 and R01-CA115870
The RSNA QIBA Profile for Amyloid PET as an Imaging Biomarker for Cerebral Amyloid Quantification
A standardized approach to acquiring amyloid PET images increases their value as disease and drug response biomarkers. Most 18F PET amyloid brain scans often are assessed only visually (per regulatory labels), with a binary decision indicating the presence or absence of Alzheimer disease amyloid pathology. Minimizing technical variance allows precise, quantitative SUV ratios (SUVRs) for early detection of b-amyloid plaques and allows the effectiveness of antiamyloid treatments to be assessed with serial studies. Methods: The Quantitative Imaging Biomarkers Alliance amyloid PET biomarker committee developed and validated a profile to characterize and reduce the variability of SUVRs, increasing statistical power for these assessments. Results: On achieving conformance, sites can justify a claim that brain amyloid burden reflected by the SUVR is measurable to a within-subject coefficient of variation of no more than 1.94% when the same radiopharmaceutical, scanner, acquisition, and analysis protocols are used. Conclusion: This overview explains the claim, requirements, barriers, and potential future developments of the profile to achieve precision in clinical and research amyloid PET imaging.</p
The future of hybrid imaging—part 2: PET/CT
Since the 1990s, hybrid imaging by means of software and hardware image fusion alike allows the intrinsic combination of functional and anatomical image information. This review summarises the state-of-the-art of dual-modality imaging with a focus on clinical applications. We highlight selected areas for potential improvement of combined imaging technologies and new applications. In the second part, we briefly review the background of dual-modality PET/CT imaging, discuss its main applications and attempt to predict technological and methodological improvements of combined PET/CT imaging. After a decade of clinical evaluation, PET/CT will continue to have a significant impact on patient management, mainly in the area of oncological diseases. By adopting more innovative acquisition schemes and data processing PET/CT will become a fast and dose-efficient imaging method and an integral part of state-of-the-art clinical patient management
Home Range and Ranging Behaviour of Bornean Elephant (Elephas maximus borneensis) Females
BACKGROUND: Home range is defined as the extent and location of the area covered annually by a wild animal in its natural habitat. Studies of African and Indian elephants in landscapes of largely open habitats have indicated that the sizes of the home range are determined not only by the food supplies and seasonal changes, but also by numerous other factors including availability of water sources, habitat loss and the existence of man-made barriers. The home range size for the Bornean elephant had never been investigated before. METHODOLOGY/PRINCIPAL FINDINGS: The first satellite tracking program to investigate the movement of wild Bornean elephants in Sabah was initiated in 2005. Five adult female elephants were immobilized and neck collars were fitted with tracking devices. The sizes of their home range and movement patterns were determined using location data gathered from a satellite tracking system and analyzed by using the Minimum Convex Polygon and Harmonic Mean methods. Home range size was estimated to be 250 to 400 km(2) in a non-fragmented forest and 600 km(2) in a fragmented forest. The ranging behavior was influenced by the size of the natural forest habitat and the availability of permanent water sources. The movement pattern was influenced by human disturbance and the need to move from one feeding site to another. CONCLUSIONS/SIGNIFICANCE: Home range and movement rate were influenced by the degree of habitat fragmentation. Once habitat was cleared or converted, the availability of food plants and water sources were reduced, forcing the elephants to travel to adjacent forest areas. Therefore movement rate in fragmented forest was higher than in the non-fragmented forest. Finally, in fragmented habitat human and elephant conflict occurrences were likely to be higher, due to increased movement bringing elephants into contact more often with humans
PET Molecular Targets and Near-Infrared Fluorescence Imaging of Atherosclerosis
PURPOSE OF REVIEW: With this review, we aim to summarize the role of positron emission tomography (PET) and near-infrared fluorescence imaging (NIRF) in the detection of atherosclerosis. RECENT FINDINGS: (18)F-FDG is an established measure of increased macrophage activity. However, due to its low specificity, new radiotracers have emerged for more specific detection of vascular inflammation and other high-risk plaque features such as microcalcification and neovascularization. Novel NIRF probes are engineered to sense endothelial damage as an early sign of plaque erosion as well as oxidized low-density lipoprotein (oxLDL) as a prime target for atherosclerosis. Integrated NIRF/OCT (optical coherence tomography) catheters enable to detect stent-associated microthrombi. Novel radiotracers can improve specificity of PET for imaging atherosclerosis. Advanced NIRF probes show promise for future application in human. Intravascular NIRF might play a prominent role in the detection of stent-induced vascular injury
Altered branching patterns of Purkinje cells in mouse model for cortical development disorder
Disrupted cortical cytoarchitecture in cerebellum is a typical pathology in reeler. Particularly interesting are structural problems at the cellular level: dendritic morphology has important functional implication in signal processing. Here we describe a combinatorial imaging method of synchrotron X-ray microtomography with Golgi staining, which can deliver 3-dimensional(3-D) micro-architectures of Purkinje cell(PC) dendrites, and give access to quantitative information in 3-D geometry. In reeler, we visualized in 3-D geometry the shape alterations of planar PC dendrites (i.e., abnormal 3-D arborization). Despite these alterations, the 3-D quantitative analysis of the branching patterns showed no significant changes of the 77 ± 8° branch angle, whereas the branch segment length strongly increased with large fluctuations, comparing to control. The 3-D fractal dimension of the PCs decreased from 1.723 to 1.254, indicating a significant reduction of dendritic complexity. This study provides insights into etiologies and further potential treatment options for lissencephaly and various neurodevelopmental disorders
Solvent-selective routing for centrifugally automated solid-phase purification of RNA
The final publication is available at Springer via https://doi.org/10.1007/s10404-014-1477-9.We present a disc-based module for rotationally controlled solid-phase purification of RNA from cell lysate. To this end, multi-stage routing of a sequence of aqueous and organic liquids into designated waste and elution reservoirs is implemented by a network of strategically placed, solvent-selective composite valves. Using a bead-based stationary phase at the entrance of the router, we show that total RNA is purified with high integrity from cultured MCF7 and T47D cell lines, human leucocytes and Haemophilus influenzae cell lysates. Furthermore, we demonstrate the broad applicability of the device through the in vitro amplification of RNA purified on-disc using RT-PCR and NASBA. Our novel router will be at the pivot of a forthcoming, fully integrated and automated sample preparation system for RNA-based analysis.Peer reviewe
- …