10 research outputs found

    Evaluation of 4,6-Diamidino-2-phenylindole as a Fluorescent Probe Substrate for Rapid Assays of the Functionality of Human Multidrug and Toxin Extrusion Proteins

    Get PDF
    ABSTRACT: Multidrug and toxin extrusion protein 1 (MATE1) and MATE2-K are organic cation/H ؉ antiporters that have recently been identified and suggested to be responsible for the brush border secretory transport of many cationic drugs in renal tubules. We here report our finding that 4,6-diamidino-2-phenylindole (DAPI) can be used as a probe substrate for rapid assays of the functionality of the human MATEs, hMATE1, and hMATE2-K, by taking advantage of its fluorescent nature. The specific cellular uptakes of DAPI by cloned hMATE1 and hMATE2-K, which were assessed by fluorescence intensity, were found to be rapid and saturable with the Michaelis constants of 1.13 and 3.16 M, respectively, indicating that DAPI is a good substrate of both hMATEs. It was found that many organic cations inhibit the specific uptake of DAPI by hMATE1 and hMATE2-K, and the extents of inhibition are in good correlation with those of inhibition of the specific uptake of [ 3 H]cimetidine as a typical substrate, indicating comparable performances of both substrates as probes in identifying inhibitors. Thus, DAPI can be an alternative probe substrate that enables fluorometric rapid assays of the functionality of both hMATEs. It was also found that the other major renal organic cation transporters, human organic cation transporter 2 (hOCT2), hOCT3, human novel organic cation transporter 1 (hOCTN1), and hOCTN2, cannot transport DAPI, although hOCT1, which is mainly expressed in the liver, can. Therefore, the DAPI uptake assay can be a method specific to the hMATEs among organic cation transporters in the human kidney

    Identification and Functional Characterization of the First Nucleobase Transporter in Mammals: IMPLICATION IN THE SPECIES DIFFERENCE IN THE INTESTINAL ABSORPTION MECHANISM OF NUCLEOBASES AND THEIR ANALOGS BETWEEN HIGHER PRIMATES AND OTHER MAMMALS*

    No full text
    Nucleobases are important compounds that constitute nucleosides and nucleic acids. Although it has long been suggested that specific transporters are involved in their intestinal absorption and uptake in other tissues, none of their molecular entities have been identified in mammals to date. Here we describe identification of rat Slc23a4 as the first sodium-dependent nucleobase transporter (rSNBT1). The mRNA of rSNBT1 was expressed highly and only in the small intestine. When transiently expressed in HEK293 cells, rSNBT1 could transport uracil most efficiently. The transport of uracil mediated by rSNBT1 was sodium-dependent and saturable with a Michaelis constant of 21.2 ÎĽm. Thymine, guanine, hypoxanthine, and xanthine were also transported, but adenine was not. It was also suggested by studies of the inhibitory effect on rSNBT1-mediated uracil transport that several nucleobase analogs such as 5-fluorouracil are recognized by rSNBT1, but cytosine and nucleosides are not or only poorly recognized. Furthermore, rSNBT1 fused with green fluorescent protein was mainly localized at the apical membrane, when stably expressed in polarized Madin-Darby canine kidney II cells. These characteristics of rSNBT1 were almost fully in agreement with those of the carrier-mediated transport system involved in intestinal uracil uptake. Therefore, it is likely that rSNBT1 is its molecular entity or at least in part responsible for that. It was also found that the gene orthologous to the rSNBT1 gene is genetically defective in humans. This may have a biological and evolutional meaning in the transport and metabolism of nucleobases. The present study provides novel insights into the specific transport and metabolism of nucleobases and their analogs for therapeutic use
    corecore