367 research outputs found
Museum Exhibitions of Fossil Specimens Into Commercial Products : Unexpected Outflow of 3D Models due to Unwritten Image Policies
Recent innovations and cost reductions in photogrammetry-based 3D modeling have enabled museum visitors to create 3D models based on photographs exhibited in galleries without breaking museum policies. While several museums make 3D museum data available on sharing platforms, museum visitors publish unofficial 3D data belonging to museum exhibits using a photogrammetry-based approach. This study shows that photogrammetry-based 3D models can be generated without breaking conventional photo policies (i.e., no use of flash and tripods) and that museum visitors can create commercial products based on these models. 3D models certainly enhance scientific value and promote broader and deeper interests in the natural sciences; however, the rights of owners of museum pieces are ambiguous with regard to the dissemination of unofficial data. This also makes information attributable to the original specimen unclear, which can potentially lead to revenue loss. We propose a set of best practices for museum photo policies covering the data use of visitor-generated 3D models of displayed objects
Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields
We investigate the effects of magnetic-field configurations on the ionization rate by cosmic rays in protoplanetary disks. First, we consider cosmic-ray propagation from the interstellar medium (ISM) to the protoplanetary disks and showed that the cosmic-ray density around the disk should be 2 times lower than the ISM value. Then, we compute the attenuation of cosmic rays in protoplanetary disks. The magnetic fields in the disk are stretched to the azimuthal directions, and cosmic rays need to detour while propagating to the midplane. Our results show that the detouring effectively enhances the column density by about two orders of magnitude. We employ a typical ionization rate by cosmic rays in diffuse ISM, which is considered too high to be consistent with observations of protoplanetary disks, and find that the cosmic rays are significantly shielded at the midplane. In the case of the disk around IM Lup, the midplane ionization rate is very low for r ≲ 100 au, while the value is as large as a diffuse ISM in the outer radii. Our results are consistent with the recent Atacama Large Millimeter/submillimeter Array observation that indicates the radial gradient in the cosmic-ray ionization rate. The high ionization rate in the outer radii of disks may activate the magnetorotational instability that was thought to be suppressed due to ambipolar diffusion. These results will have a strong influence on the dynamical and chemical evolutions of protoplanetary disks
Accuracy of dental microwear impressions by physical properties of silicone materials
Dental microwear analysis is an oft-used paleodietary estimation method, and the impression molds or resin casts are often analyzed rather than the original tooth surfaces. A choice of silicone products for dental impressions is crucial because the quality of microwear data is affected by the impression accuracy of the molds. For this reason, microwear researchers have heavily depended on a few commercial products such as "President" (Coltène/Whaledent AG, Switzerland) to avoid analytical errors caused using different silicone materials. Considering that the production business might be terminated, however, heavy reliance on specific products could be a potential weakness in the field. In this study, we aimed at identifying specific indexes of physical properties of silicone materials with satisfactory accuracy. For this purpose, we measured dynamic viscoelasticity and shrinkage rates of various silicone compounds, including the standard impression material President and other eight affordable dental silicones. We scanned both original tooth surface and dental impression molds with a confocal laser microscope and conducted dental microwear texture analysis (DMTA) to quantitatively compare the scanned surfaces. The results showed relationships between the material properties of silicones and impression accuracy, indicating that the materials that cured slowly and began to shrink relatively early in the hardening process were less accurate. Some of these dental impression molds showed blurred surfaces, implying that molds were peeled off from the tooth surface at the microscopic level, as the shrinkage speed might exceed the curing speed. The following indices provided in the product information were found to be helpful in the search for substitutes: (1) medium viscosity, (2) short curing time after mixing (5-6 min), and (3) delayed change in shrinkage
Lineage-Specific Responses of Tooth Shape in Murine Rodents (Murinae, Rodentia) to Late Miocene Dietary Change in the Siwaliks of Pakistan
Past ecological responses of mammals to climate change are recognized in the fossil record by adaptive significance of morphological variations. To understand the role of dietary behavior on functional adaptations of dental morphology in rodent evolution, we examine evolutionary change of tooth shape in late Miocene Siwalik murine rodents, which experienced a dietary shift toward C4 diets during late Miocene ecological change indicated by carbon isotopic evidence. Geometric morphometric analysis in the outline of upper first molars captures dichotomous lineages of Siwalik murines, in agreement with phylogenetic hypotheses of previous studies (two distinct clades: the Karnimata and Progonomys clades), and indicates lineage-specific functional responses to mechanical properties of their diets. Tooth shapes of the two clades are similar at their sympatric origin but deviate from each other with decreasing overlap through time. Shape change in the Karnimata clade is associated with greater efficiency of propalinal chewing for tough diets than in the Progonomys clade. Larger body mass in Karnimata may be related to exploitation of lower-quality food items, such as grasses, than in smaller-bodied Progonomys. The functional and ecophysiological aspects of Karnimata exploiting C4 grasses are concordant with their isotopic dietary preference relative to Progonomys. Lineage-specific selection was differentially greater in Karnimata, and a faster rate of shape change toward derived Karnimata facilitated inclusion of C4 grasses in the diet. Sympatric speciation in these clades is most plausibly explained by interspecific competition on resource utilization between the two, based on comparisons of our results with the carbon isotope data. Interspecific competition with Karnimata may have suppressed morphological innovation of the Progonomys clade. Pairwise analyses of morphological and carbon isotope data can uncover ecological causes of sympatric speciation and define functional adaptations of teeth to resources
Conservation paleobiology on Minami-Daito Island, Okinawa, Japan: anthropogenic extinction of cave-dwelling bats on a tropical oceanic island
Altres ajuts: CERCA Programme/Generalitat de CatalunyaWith strong environmental and geographic filtration, vertebrates incapable of flying and swimming are often extirpated from island ecosystems. Minami-Daito Island is an oceanic island in Okinawa, Japan that harbors the Daito flying fox (Pteropus dasymallus daitoensis), a subspecies of the fruit bat and the only extant mammal endemic to the island. However, the skeleton of a cave-dwelling bat Rhinolophus sp. and fossil guano were briefly reported in a previous study. Here, we present evidence for the anthropogenic extirpation of two species of cave-dwelling bats (Miniopterus sp. & Rhinolophus sp.) from Minami-Daito Island. Our goal is to reliably constrain the ages of the extirpated bat species by a multiproxy approach. Because skeletal materials did not preserve sufficient bone collagen for direct radiocarbon dating, we alternatively examined guano-like deposits based n SEM observation and Fourier-transform infrared spectroscopy (FTIR) along with stable carbon and nitrogen isotope analyses for possible indirect dating. We also examined stable carbon isotopes in bone apatite, assuming that an isotopic signal of C4 plants on the bat bones links to sugarcane plantation on the island based on the historical knowledge that early human settlers quickly replaced the island's native C3 forests with sugarcane (C4 perennial grass) plantation from 1900 onward. Our cave survey documents the remains of Miniopterus sp. from the island for the first time. Based on the unique taphonomic conditions (unpermineralized bones, disarticulated skeletons closely scattered without sediment cover, various degrees of calcite crystal growth around bones) and a radiocarbon age of a humic sample, we suggest that the maximum age constraint of Miniopterus sp. and Rhinolophus sp. is 4,640 calBP. Based on a series of analyses, we conclude that the guano-like deposits are composed not of bat guano but mainly of humic substances; however, a hydroxyapatite crust associated with bat-lying stalagmites may be derived from bat feces. Stable carbon isotope analysis of bone apatite revealed C4 signals in various degrees, confirming that small populations of cave-dwelling bats persisted on Minami-Daito Island after 1900. The results of this study indicate that these populations remained rather small and did not leave many generations and that the estimated ages can be bracketed from 4,640 calBP to the post-1900 (perhaps, until the 1950s). They likely faced a continuously high mortality risk due to severe anthropogenic stresses on the island, where most of the forests were turned into sugarcane plantations within a few decades in the early 20th century. A result of hearing surveys to local residents suggests the latest remnants most likely disappeared on the island concurrently with the introduction of chemical pesticides after World War II
A Case Report of Lipid-Rich Carcinoma of the Breast Including Histological Characteristics and Intrinsic Subtype Profile
A 57-year-old Japanese woman with schizophrenia, who had received long-term treatment with neuroleptics, noticed a painless, pea-sized lump in her right breast. She was admitted to our hospital and a malignant tumor was diagnosed. The patient underwent a conservative radical mastectomy (Patey's operation). The excised tumor measured 2.0 × 1.2 × 1.1 cm in diameter, and its cut surface was grayish-white. Histologically, tumor cells with clear to foamy cytoplasm were invariably Oil Red O-positive and periodic acid Schiff-negative with or without diastase digestion. The tumor was diagnosed as a lipid-rich carcinoma accompanied by an in situ component. Neuroleptics increase serum prolactin levels by interfering with dopaminergic inhibition of prolactin secretion. Immunohistochemical analysis revealed that, although prolactin was not detected, the tumor cells expressed prolactin receptor, indicating prolactin as the genesis of this neoplasm. In immunohistochemical intrinsic subtype analysis, the tumor was negative for estrogen receptor, progesterone receptor, human epidermal growth factor receptor 1 and 2, and basal cytokeratins (CK5, CK6, and CK14), indicating an unclassified (all-marker negative) subtype. Axillary lymph nodes were free of metastasis (stage I), and the patient has been well for 20 years without any evidence of recurrence
A Five-Year-Old Boy with Marked Hypergastrinemia Associated with H. pylori Infection
A 5-year-old boy was referred to our department for persistent epigastric discomfort. Serum gastrin level was 635 pg/ml with a pepsinogen (PG) I level of 102.7 ng/ml and a PG I/II ratio of 23.2, indicating a hyperacidic state. Upper gastrointestinal endoscopy showed normal gastric mucosal folds and no abnormalities including no gastric mucosal atrophy. To investigate the cause of hypergastrinemia, a Ca injection test was performed and the patient showed no definitive response to a large load of Ca. Contrast-enhanced dynamic CT revealed no space-occupying lesions. The results from these two studies were not consistent with the presence of gastrinoma. A urea breath test showed 2.8%, and a test for the fecal H. pylori antigen was positive. Since H. pylori infection was considered to be a possible cause of hypergastrinemia, eradication therapy was introduced. The therapy was shown to be successful by using a repeated urea breath test that showed a normalization to 0.6%. 7 months after the therapy blood examination showed a gastrin level of 191 pg/ml, a PG I level of 36.7 ng/ml, and a PG I/II ratio of 7.3. An immunostaining study of the gastric mucosa suggested that a decrease in somatostatin secretion due to a reduction in D cell population might have induced hypergastrinemia in this case. In children with H. pylori infection showing marked hypergastrinemia, immunohistochemical examination and therapeutic diagnosis by eradication may be helpful in the differential diagnosis of gastrinoma
Incisor enamel microstructure places New and Old World Eomyidae outside Geomorpha (Rodentia, Mammalia)
Altres ajuts: CERCA Programme/Generalitat de CatalunyaThe lower incisor enamel microstructure of the fossil rodent family Eomyidae was believed to be three-layered and highly derived but rather uniform throughout the clade. Here, we describe a new four-layered schmelzmuster in Eomyidae consisting of a three-fold portio interna with longitudinal oriented, uniserial Hunter-Schreger bands and a one-fold portio externa, accounting for a unique enamel microstructure character combination in Rodentia. This new schmelzmuster type has developed early in eomyid evolution and is detectable already in the late Eocene (Chadronian) of North America. In European eomyids, it first occurs in the early Miocene (MN 3), implying that this four-layered schmelzmuster was not present in all members of the family but restricted to species included in Eomyini and some genera currently considered Eomyidae incertae sedis within Eomyidae. Additionally, our analysis recognizes three taxa with schmelzmuster divergent from all other eomyids. Incisor enamel microstructure does not advocate a close phylogenetic relationship of Eomyidae to either fossil or extant Heteromyidae and Geomyidae, nor to fossil Heliscomyidae and Florentiamyidae. Our results rather support the view that Eomyidae are placed outside Geomorpha
Repetitive CREB-DNA interactions at gene loci predetermined by CBP induce activity-dependent gene expression in human cortical neurons
Atsumi Yuri, Iwata Ryohei, Kimura Hiroshi, et al. Repetitive CREB-DNA interactions at gene loci predetermined by CBP induce activity-dependent gene expression in human cortical neurons. Cell Reports 3, 113576 (2023); https://doi.org/10.1016/j.celrep.2023.113576.Neuronal activity-dependent transcription plays a key role in plasticity and pathology in the brain. An intriguing question is how neuronal activity controls gene expression via interactions of transcription factors with DNA and chromatin modifiers in the nucleus. By utilizing single-molecule imaging in human embryonic stem cell (ESC)-derived cortical neurons, we demonstrate that neuronal activity increases repetitive emergence of cAMP response element-binding protein (CREB) at histone acetylation sites in the nucleus, where RNA polymerase II (RNAPII) accumulation and FOS expression occur rapidly. Neuronal activity also enhances co-localization of CREB and CREB-binding protein (CBP). Increased binding of a constitutively active CREB to CBP efficiently induces CREB repetitive emergence. On the other hand, the formation of histone acetylation sites is dependent on CBP histone modification via acetyltransferase (HAT) activity but is not affected by neuronal activity. Taken together, our results suggest that neuronal activity promotes repetitive CREB-CRE and CREB-CBP interactions at predetermined histone acetylation sites, leading to rapid gene expression
- …