36 research outputs found

    Autophagy prevents early proinflammatory responses and neutrophil recruitment during Mycobacterium tuberculosis infection without affecting pathogen burden in macrophages

    Get PDF
    The immune response to Mycobacterium tuberculosis infection determines tuberculosis disease outcomes, yet we have an incomplete understanding of what immune factors contribute to a protective immune response. Neutrophilic inflammation has been associated with poor disease prognosis in humans and in animal models during M. tuberculosis infection and, therefore, must be tightly regulated. ATG5 is an essential autophagy protein that is required in innate immune cells to control neutrophil-dominated inflammation and promote survival during M. tuberculosis infection; however, the mechanistic basis for how ATG5 regulates neutrophil recruitment is unknown. To interrogate what innate immune cells require ATG5 to control neutrophil recruitment during M. tuberculosis infection, we used different mouse strains that conditionally delete Atg5 in specific cell types. We found that ATG5 is required in CD11c+ cells (lung macrophages and dendritic cells) to control the production of proinflammatory cytokines and chemokines during M. tuberculosis infection, which would otherwise promote neutrophil recruitment. This role for ATG5 is autophagy dependent, but independent of mitophagy, LC3-associated phagocytosis, and inflammasome activation, which are the most well-characterized ways that autophagy proteins regulate inflammation. In addition to the increased proinflammatory cytokine production from macrophages during M. tuberculosis infection, loss of ATG5 in innate immune cells also results in an early induction of TH17 responses. Despite prior published in vitro cell culture experiments supporting a role for autophagy in controlling M. tuberculosis replication in macrophages, the effects of autophagy on inflammatory responses occur without changes in M. tuberculosis burden in macrophages. These findings reveal new roles for autophagy proteins in lung resident macrophages and dendritic cells that are required to suppress inflammatory responses that are associated with poor control of M. tuberculosis infection

    Characterization of autophagy-dependent and independent roles of ATG5 in controlling Mycobacterium tuberculosis infection

    No full text
    Mycobacterium tuberculosis (Mtb), a major global health threat, replicates in macrophages until IFN-γ activates the macrophages to traffic Mtb to the lysosome. How IFN-γ elicits this effect is unknown, but many studies suggest a role for autophagy, a process by which cytoplasmic contents are targeted for lysosomal degradation. The involvement of autophagy has been defined based on studies in cultured cells where Mtb colocalizes with autophagy (ATG) factors, stimulation of autophagy increases bacterial killing, and inhibition of autophagy allows for increased bacterial survival. Notably, these studies reveal modest (1.5- to 3-fold change) effects on Mtb replication. In contrast, mice lacking ATG5 in LysM+ cells succumb to Mtb within 30 days, an extremely severe phenotype similar to mice entirely lacking IFN-γ signaling. Importantly, ATG5 is the only ATG factor that has been studied during Mtb infection in vivo and autophagy-independent functions of ATG5 in immunity have been described. We used a genetic approach to elucidate the role for multiple ATG genes and the requirement for autophagy in resistance to Mtb infection in vivo. We discovered that, contrary to expectation, autophagic capacity does not correlate with the outcome of Mtb infection. Instead, ATG5 plays a unique role in protection against Mtb by preventing PMN-mediated immunopathology. Furthermore, while ATG5 is dispensable in alveolar MΦ during Mtb infection, loss of ATG5 in PMN can sensitize mice to Mtb. These findings shift the our understanding of the dominant role of ATG5 in the immune response to Mtb in vivo, reveal a new outcome of ATG5 activity in immunity, and shed light on early events in innate immunity that are required to regulate both tuberculosis disease pathology and Mtb replication

    Bacterial Pathogens versus Autophagy: Implications for Therapeutic Interventions

    No full text
    Research in recent years has focused significantly on the role of selective macroautophagy in targeting intracellular pathogens for lysosomal degradation, a process termed xenophagy. In this review we evaluate the proposed roles for xenophagy in controlling bacterial infection, highlighting the concept that successful pathogens have evolved ways to subvert or exploit this defense, minimizing the actual effectiveness of xenophagy in innate immunity. Instead, studies in animal models have revealed that autophagy-associated proteins often function outside of xenophagy to influence bacterial pathogenesis. In light of current efforts to manipulate autophagy and the development of host-directed therapies to fight bacterial infections, we also discuss the implications stemming from the complicated relationship that exists between autophagy and bacterial pathogens

    Neutrophil Recruitment in Pneumococcal Pneumonia.

    No full text
    Streptococcus pneumoniae (Spn) is the primary agent of community-acquired pneumonia. Neutrophils are innate immune cells that are essential for bacterial clearance during pneumococcal pneumonia but can also do harm to host tissue. Neutrophil migration in pneumococcal pneumonia is therefore a major determinant of host disease outcomes. During Spn infection, detection of the bacterium leads to an increase in proinflammatory signals and subsequent expression of integrins and ligands on both the neutrophil as well as endothelial and epithelial cells. These integrins and ligands mediate the tethering and migration of the neutrophil from the bloodstream to the site of infection. A gradient of host-derived and bacterial-derived chemoattractants contribute to targeted movement of neutrophils. During pneumococcal pneumonia, neutrophils are rapidly recruited to the pulmonary space, but studies show that some of the canonical neutrophil migratory machinery is dispensable. Investigation of neutrophil migration is necessary for us to understand the dynamics of pneumococcal infection. Here, we summarize what is known about the pathways that lead to migration of the neutrophil from the capillaries to the lung during pneumococcal infection
    corecore