24 research outputs found

    Stimulation of adenosine receptor enhances α1 -adrenergic receptor-mediated activation of phospholipase C and Ca2+ mobilization in a pertussis toxin-sensitive manner in FRTL-5 thyroid cells

    Get PDF
    AbstractNorepinephrine (NE) stimulated FRTL-5 thyroid cells via an α1-adrenergic receptor, resulting in cytosolic Ca2+ ([Ca2+]i) mobilization and activation of phospholipase C. Adenosine and its receptor agonist, phenylisopropyladenosine (PIA), although not exerting a direct effect, markedly enhanced the NE-induced changes. Basal NE action was not totally abolished whereas the permissive action of adenosine and PIA was completely abolished by pretreatment of the cells with islet-activating protein (IAP), pertussis toxin. The decrease in cAMP level induced by adenosine or PIA is not the cause of their permissive effect, since this effect was not reversed by the addition of cAMP-increasing agents. We conclude that an IAP substrate GTP-binding protein(s) plays a novel role in forming a stimulatory coupling between an adenosine receptor and an α1-adrenergic receptor-coupled phospholipase C system

    A study on self-efficacy which students have just before graduation ; a comparison between students of nursing universities and those of junior colleges

    Get PDF
    看護学生の卒業直前の自己効力感を明らかにし,入職後の教育や指導などへの示唆を得る目的で,看護大学4年生と看護短期大学3年生に一般性自己効力感尺度による調査を行った.その結果,看護学生の自己効力感は一般学生よりも高く,大学生は短大生よりも高い傾向が認められ,入職時には自己効力感をより高める教育や指導の重要性が示唆された.We conducted a survey of fourth-year students at a university nursing program and third-year students at a nursing junior college, using a general self-efficacy scale. Our purpose was to investigate self-efficacy beliefs among nursing students immediately before graduation and find out what sort of education and guidance should be offered to nurses after they are employed. This survey revealed that nursing students has higher self-efficacy belief than other university students and that self-efficacy tended to be even higher among university nursing program students than among junior college nursing students. The result suggest that education and guidance are important for improving even more the self-efficacy of newly employed nurses

    DNA Methylation Profiles of Primary Colorectal Carcinoma and Matched Liver Metastasis

    Get PDF
    BACKGROUND: The contribution of DNA methylation to the metastatic process in colorectal cancers (CRCs) is unclear. METHODS: We evaluated the methylation status of 13 genes (MINT1, MINT2, MINT31, MLH1, p16, p14, TIMP3, CDH1, CDH13, THBS1, MGMT, HPP1 and ERα) by bisulfite-pyrosequencing in 79 CRCs comprising 36 CRCs without liver metastasis and 43 CRCs with liver metastasis, including 16 paired primary CRCs and liver metastasis. We also performed methylated CpG island amplification microarrays (MCAM) in three paired primary and metastatic cancers. RESULTS: Methylation of p14, TIMP3 and HPP1 in primary CRCs progressively decreased from absence to presence of liver metastasis (13.1% vs. 4.3%; 14.8% vs. 3.7%; 43.9% vs. 35.8%, respectively) (P<.05). When paired primary and metastatic tumors were compared, only MGMT methylation was significantly higher in metastatic cancers (27.4% vs. 13.4%, P = .013), and this difference was due to an increase in methylation density rather than frequency in the majority of cases. MCAM showed an average 7.4% increase in DNA methylated genes in the metastatic samples. The numbers of differentially hypermethylated genes in the liver metastases increased with increasing time between resection of the primary and resection of the liver metastasis. Bisulfite-pyrosequencing validation in 12 paired samples showed that most of these increases were not conserved, and could be explained by differences in methylation density rather than frequency. CONCLUSIONS: Most DNA methylation differences between primary CRCs and matched liver metastasis are due to random variation and an increase in DNA methylation density rather than de-novo inactivation and silencing. Thus, DNA methylation changes occur for the most part before progression to liver metastasis

    Aberrant DNA Methylation Is Associated with Disease Progression, Resistance to Imatinib and Shortened Survival in Chronic Myelogenous Leukemia

    Get PDF
    The epigenetic impact of DNA methylation in chronic myelogenous leukemia (CML) is not completely understood. To elucidate its role we analyzed 120 patients with CML for methylation of promoter-associated CpG islands of 10 genes. Five genes were identified by DNA methylation screening in the K562 cell line and 3 genes in patients with myeloproliferative neoplasms. The CDKN2B gene was selected for its frequent methylation in myeloid malignancies and ABL1 as the target of BCR-ABL translocation. Thirty patients were imatinib-naïve (mostly treated by interferon-alpha before the imatinib era), 30 were imatinib-responsive, 50 were imatinib-resistant, and 10 were imatinib-intolerant. We quantified DNA methylation by bisulfite pyrosequencing. The average number of methylated genes was 4.5 per patient in the chronic phase, increasing significantly to 6.2 in the accelerated and 6.4 in the blastic phase. Higher numbers of methylated genes were also observed in patients resistant or intolerant to imatinib. These patients also showed almost exclusive methylation of a putative transporter OSCP1. Abnormal methylation of a Src suppressor gene PDLIM4 was associated with shortened survival independently of CML stage and imatinib responsiveness. We conclude that aberrant DNA methylation is associated with CML progression and that DNA methylation could be a marker associated with imatinib resistance. Finally, DNA methylation of PDLIM4 may help identify a subset of CML patients that would benefit from treatment with Src/Abl inhibitors

    Gsk-3-Mediated Proteasomal Degradation of ATF4 Is a Proapoptotic Mechanism in Mouse Pancreatic β-Cells

    No full text
    Endoplasmic reticulum (ER) stress is a key pathogenic factor in type 1 and 2 diabetes. Glycogen synthase kinase 3 (Gsk-3) contributes to β-cell loss in mice. However, the mechanism by which Gsk-3 leads β-cell death remains unclear. ER stress was pharmacologically induced in mouse primary islets and insulinoma cells. We used insulinoma cells derived from Akita mice as a model of genetic ER stress. Gsk-3 activity was blocked by treating with Gsk-3 inhibitors or by introducing catalytically inactive Gsk-3β. Gsk-3 inhibition prevented proteasomal degradation of activating transcriptional factor 4 (ATF4) and alleviated apoptosis. We found that ATF4-S214 was phosphorylated by Gsk-3, and that this was required for a binding of ATF4 with βTrCP, which mediates polyubiquitination. The anti-apoptotic effect of Gsk-3 inhibition was attenuated by introducing DN-ATF4 or by knockdown of ATF4. Mechanistically, Gsk-3 inhibition modulated transcription targets of ATF4 and in turn facilitated dephosphorylation of eIF2α, altering the protein translational dynamism under ER stress. These observations were reproduced in the Akita mouse-derived cells. Thus, these results reveal the role of Gsk-3 in the regulation of the integrated stress response, and provide a rationale for inhibiting this enzyme to prevent β-cell death under ER stress conditions
    corecore