404 research outputs found

    Bistability in Feshbach Resonance

    Full text link
    A coupled atom-molecule condensate with an intraspecies Feshbach resonance is employed to explore matter wave bistability both in the presence and in the absence of a unidirectional optical ring cavity. In particular, a set of conditions are derived that allow the threshold for bistability, due both to two-body s-wave scatterings and to cavity-mediated two-body interactions, to be determined analytically. The latter bistability is found to support, not only transitions between a mixed (atom-molecule) state and a pure molecular state as in the former bistability, but also transitions between two distinct mixed states.Comment: 6 pages + 3 figures; To appear in Jounal of Modern Optics, Special Issue - Festschrift in Honor of Lorenzo Narducc

    Theory of Photon Blockade by an Optical Cavity with One Trapped Atom

    Get PDF
    In our recent paper [1], we reported observations of photon blockade by one atom strongly coupled to an optical cavity. In support of these measurements, here we provide an expanded discussion of the general phenomenology of photon blockade as well as of the theoretical model and results that were presented in Ref. [1]. We describe the general condition for photon blockade in terms of the transmission coefficients for photon number states. For the atom-cavity system of Ref. [1], we present the model Hamiltonian and examine the relationship of the eigenvalues to the predicted intensity correlation function. We explore the effect of different driving mechanisms on the photon statistics. We also present additional corrections to the model to describe cavity birefringence and ac-Stark shifts. [1] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).Comment: 10 pages, 6 figure

    Observation of squeezed light from one atom excited with two photons

    Full text link
    Single quantum emitters like atoms are well-known as non-classical light sources which can produce photons one by one at given times, with reduced intensity noise. However, the light field emitted by a single atom can exhibit much richer dynamics. A prominent example is the predicted ability for a single atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or phase fluctuations. It has long been foreseen, though, that such squeezing would be "at least an order of magnitude more difficult" to observe than the emission of single photons. Squeezed beams have been generated using macroscopic and mesoscopic media down to a few tens of atoms, but despite experimental efforts, single-atom squeezing has so far escaped observation. Here we generate squeezed light with a single atom in a high-finesse optical resonator. The strong coupling of the atom to the cavity field induces a genuine quantum mechanical nonlinearity, several orders of magnitude larger than for usual macroscopic media. This produces observable quadrature squeezing with an excitation beam containing on average only two photons per system lifetime. In sharp contrast to the emission of single photons, the squeezed light stems from the quantum coherence of photon pairs emitted from the system. The ability of a single atom to induce strong coherent interactions between propagating photons opens up new perspectives for photonic quantum logic with single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages, 2 figures). Revised versio

    Quantum Storage of Photonic Entanglement in a Crystal

    Full text link
    Entanglement is the fundamental characteristic of quantum physics. Large experimental efforts are devoted to harness entanglement between various physical systems. In particular, entanglement between light and material systems is interesting due to their prospective roles as "flying" and stationary qubits in future quantum information technologies, such as quantum repeaters and quantum networks. Here we report the first demonstration of entanglement between a photon at telecommunication wavelength and a single collective atomic excitation stored in a crystal. One photon from an energy-time entangled pair is mapped onto a crystal and then released into a well-defined spatial mode after a predetermined storage time. The other photon is at telecommunication wavelength and is sent directly through a 50 m fiber link to an analyzer. Successful transfer of entanglement to the crystal and back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH) inequality by almost three standard deviations (S=2.64+/-0.23). These results represent an important step towards quantum communication technologies based on solid-state devices. In particular, our resources pave the way for building efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref. [36

    Cavity QED with a Bose-Einstein condensate

    Full text link
    Cavity quantum electrodynamics (cavity QED) describes the coherent interaction between matter and an electromagnetic field confined within a resonator structure, and is providing a useful platform for developing concepts in quantum information processing. By using high-quality resonators, a strong coupling regime can be reached experimentally in which atoms coherently exchange a photon with a single light-field mode many times before dissipation sets in. This has led to fundamental studies with both microwave and optical resonators. To meet the challenges posed by quantum state engineering and quantum information processing, recent experiments have focused on laser cooling and trapping of atoms inside an optical cavity. However, the tremendous degree of control over atomic gases achieved with Bose-Einstein condensation has so far not been used for cavity QED. Here we achieve the strong coupling of a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse optical cavity and present a measurement of its eigenenergy spectrum. This is a conceptually new regime of cavity QED, in which all atoms occupy a single mode of a matter-wave field and couple identically to the light field, sharing a single excitation. This opens possibilities ranging from quantum communication to a wealth of new phenomena that can be expected in the many-body physics of quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature; updated Fig. 4; changed atom numbers due to new calibratio

    Quantum-Dense Metrology

    Full text link
    Quantum metrology utilizes entanglement for improving the sensitivity of measurements. Up to now the focus has been on the measurement of just one out of two non-commuting observables. Here we demonstrate a laser interferometer that provides information about two non-commuting observables, with uncertainties below that of the meter's quantum ground state. Our experiment is a proof-of-principle of quantum dense metrology, and uses the additional information to distinguish between the actual phase signal and a parasitic signal due to scattered and frequency shifted photons. Our approach can be readily applied to improve squeezed-light enhanced gravitational-wave detectors at non-quantum noise limited detection frequencies in terms of a sub shot-noise veto-channel.Comment: 5 pages, 3 figures; includes supplementary material

    Coherent optical wavelength conversion via cavity-optomechanics

    Get PDF
    We theoretically propose and experimentally demonstrate coherent wavelength conversion of optical photons using photon-phonon translation in a cavity-optomechanical system. For an engineered silicon optomechanical crystal nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5 MHz bandwidth are coherently converted over a 11.2 THz frequency span between one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with a 93% internal (2% external) peak efficiency. The thermal and quantum limiting noise involved in the conversion process is also analyzed, and in terms of an equivalent photon number signal level are found to correspond to an internal noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi

    Heralded single photon absorption by a single atom

    Full text link
    The emission and absorption of single photons by single atomic particles is a fundamental limit of matter-light interaction, manifesting its quantum mechanical nature. At the same time, as a controlled process it is a key enabling tool for quantum technologies, such as quantum optical information technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission and absorption will allow implementing quantum networking scenarios [1, 7, 8, 9], where photonic communication of quantum information is interfaced with its local processing in atoms. In studies of single-photon emission, recent progress includes control of the shape, bandwidth, frequency, and polarization of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption of a single photon by a single atom is much less investigated; proposals exist but only very preliminary steps have been taken experimentally such as detecting the attenuation and phase shift of a weak laser beam by a single atom [21, 22], and designing an optical system that covers a large fraction of the full solid angle [23, 24, 25]. Here we report the interaction of single heralded photons with a single trapped atom. We find strong correlations of the detection of a heralding photon with a change in the quantum state of the atom marking absorption of the quantum-correlated heralded photon. In coupling a single absorber with a quantum light source, our experiment demonstrates previously unexplored matter-light interaction, while opening up new avenues towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure

    Quantum internet using code division multiple access

    Full text link
    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.Comment: 29 pages, 6 figure

    Linear and nonlinear optical spectroscopy of a strongly-coupled microdisk-quantum dot system

    Full text link
    A fiber taper waveguide is used to perform direct optical spectroscopy of a microdisk-quantum-dot system, exciting the system through the photonic (light) channel rather than the excitonic (matter) channel. Strong coupling, the regime of coherent quantum interactions, is demonstrated through observation of vacuum Rabi splitting in the transmitted and reflected signals from the cavity. The fiber coupling method also allows the examination of the system's steady-state nonlinear properties, where saturation of the cavity-QD response is observed for less than one intracavity photon.Comment: adjusted references, added minor clarification
    corecore