404 research outputs found
Bistability in Feshbach Resonance
A coupled atom-molecule condensate with an intraspecies Feshbach resonance is
employed to explore matter wave bistability both in the presence and in the
absence of a unidirectional optical ring cavity. In particular, a set of
conditions are derived that allow the threshold for bistability, due both to
two-body s-wave scatterings and to cavity-mediated two-body interactions, to be
determined analytically. The latter bistability is found to support, not only
transitions between a mixed (atom-molecule) state and a pure molecular state as
in the former bistability, but also transitions between two distinct mixed
states.Comment: 6 pages + 3 figures; To appear in Jounal of Modern Optics, Special
Issue - Festschrift in Honor of Lorenzo Narducc
Theory of Photon Blockade by an Optical Cavity with One Trapped Atom
In our recent paper [1], we reported observations of photon blockade by one
atom strongly coupled to an optical cavity. In support of these measurements,
here we provide an expanded discussion of the general phenomenology of photon
blockade as well as of the theoretical model and results that were presented in
Ref. [1]. We describe the general condition for photon blockade in terms of the
transmission coefficients for photon number states. For the atom-cavity system
of Ref. [1], we present the model Hamiltonian and examine the relationship of
the eigenvalues to the predicted intensity correlation function. We explore the
effect of different driving mechanisms on the photon statistics. We also
present additional corrections to the model to describe cavity birefringence
and ac-Stark shifts. [1] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T.
E. Northup, and H. J. Kimble, Nature 436, 87 (2005).Comment: 10 pages, 6 figure
Observation of squeezed light from one atom excited with two photons
Single quantum emitters like atoms are well-known as non-classical light
sources which can produce photons one by one at given times, with reduced
intensity noise. However, the light field emitted by a single atom can exhibit
much richer dynamics. A prominent example is the predicted ability for a single
atom to produce quadrature-squeezed light, with sub-shot-noise amplitude or
phase fluctuations. It has long been foreseen, though, that such squeezing
would be "at least an order of magnitude more difficult" to observe than the
emission of single photons. Squeezed beams have been generated using
macroscopic and mesoscopic media down to a few tens of atoms, but despite
experimental efforts, single-atom squeezing has so far escaped observation.
Here we generate squeezed light with a single atom in a high-finesse optical
resonator. The strong coupling of the atom to the cavity field induces a
genuine quantum mechanical nonlinearity, several orders of magnitude larger
than for usual macroscopic media. This produces observable quadrature squeezing
with an excitation beam containing on average only two photons per system
lifetime. In sharp contrast to the emission of single photons, the squeezed
light stems from the quantum coherence of photon pairs emitted from the system.
The ability of a single atom to induce strong coherent interactions between
propagating photons opens up new perspectives for photonic quantum logic with
single emittersComment: Main paper (4 pages, 3 figures) + Supplementary information (5 pages,
2 figures). Revised versio
Quantum Storage of Photonic Entanglement in a Crystal
Entanglement is the fundamental characteristic of quantum physics. Large
experimental efforts are devoted to harness entanglement between various
physical systems. In particular, entanglement between light and material
systems is interesting due to their prospective roles as "flying" and
stationary qubits in future quantum information technologies, such as quantum
repeaters and quantum networks. Here we report the first demonstration of
entanglement between a photon at telecommunication wavelength and a single
collective atomic excitation stored in a crystal. One photon from an
energy-time entangled pair is mapped onto a crystal and then released into a
well-defined spatial mode after a predetermined storage time. The other photon
is at telecommunication wavelength and is sent directly through a 50 m fiber
link to an analyzer. Successful transfer of entanglement to the crystal and
back is proven by a violation of the Clauser-Horne-Shimony-Holt (CHSH)
inequality by almost three standard deviations (S=2.64+/-0.23). These results
represent an important step towards quantum communication technologies based on
solid-state devices. In particular, our resources pave the way for building
efficient multiplexed quantum repeaters for long-distance quantum networks.Comment: 5 pages, 3 figures + supplementary information; fixed typo in ref.
[36
Cavity QED with a Bose-Einstein condensate
Cavity quantum electrodynamics (cavity QED) describes the coherent
interaction between matter and an electromagnetic field confined within a
resonator structure, and is providing a useful platform for developing concepts
in quantum information processing. By using high-quality resonators, a strong
coupling regime can be reached experimentally in which atoms coherently
exchange a photon with a single light-field mode many times before dissipation
sets in. This has led to fundamental studies with both microwave and optical
resonators. To meet the challenges posed by quantum state engineering and
quantum information processing, recent experiments have focused on laser
cooling and trapping of atoms inside an optical cavity. However, the tremendous
degree of control over atomic gases achieved with Bose-Einstein condensation
has so far not been used for cavity QED. Here we achieve the strong coupling of
a Bose-Einstein condensate to the quantized field of an ultrahigh-finesse
optical cavity and present a measurement of its eigenenergy spectrum. This is a
conceptually new regime of cavity QED, in which all atoms occupy a single mode
of a matter-wave field and couple identically to the light field, sharing a
single excitation. This opens possibilities ranging from quantum communication
to a wealth of new phenomena that can be expected in the many-body physics of
quantum gases with cavity-mediated interactions.Comment: 6 pages, 4 figures; version accepted for publication in Nature;
updated Fig. 4; changed atom numbers due to new calibratio
Quantum-Dense Metrology
Quantum metrology utilizes entanglement for improving the sensitivity of
measurements. Up to now the focus has been on the measurement of just one out
of two non-commuting observables. Here we demonstrate a laser interferometer
that provides information about two non-commuting observables, with
uncertainties below that of the meter's quantum ground state. Our experiment is
a proof-of-principle of quantum dense metrology, and uses the additional
information to distinguish between the actual phase signal and a parasitic
signal due to scattered and frequency shifted photons. Our approach can be
readily applied to improve squeezed-light enhanced gravitational-wave detectors
at non-quantum noise limited detection frequencies in terms of a sub shot-noise
veto-channel.Comment: 5 pages, 3 figures; includes supplementary material
Coherent optical wavelength conversion via cavity-optomechanics
We theoretically propose and experimentally demonstrate coherent wavelength
conversion of optical photons using photon-phonon translation in a
cavity-optomechanical system. For an engineered silicon optomechanical crystal
nanocavity supporting a 4 GHz localized phonon mode, optical signals in a 1.5
MHz bandwidth are coherently converted over a 11.2 THz frequency span between
one cavity mode at wavelength 1460 nm and a second cavity mode at 1545 nm with
a 93% internal (2% external) peak efficiency. The thermal and quantum limiting
noise involved in the conversion process is also analyzed, and in terms of an
equivalent photon number signal level are found to correspond to an internal
noise level of only 6 and 4x10-3 quanta, respectively.Comment: 11 pages, 7 figures, appendi
Heralded single photon absorption by a single atom
The emission and absorption of single photons by single atomic particles is a
fundamental limit of matter-light interaction, manifesting its quantum
mechanical nature. At the same time, as a controlled process it is a key
enabling tool for quantum technologies, such as quantum optical information
technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission
and absorption will allow implementing quantum networking scenarios [1, 7, 8,
9], where photonic communication of quantum information is interfaced with its
local processing in atoms. In studies of single-photon emission, recent
progress includes control of the shape, bandwidth, frequency, and polarization
of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the
demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption
of a single photon by a single atom is much less investigated; proposals exist
but only very preliminary steps have been taken experimentally such as
detecting the attenuation and phase shift of a weak laser beam by a single atom
[21, 22], and designing an optical system that covers a large fraction of the
full solid angle [23, 24, 25]. Here we report the interaction of single
heralded photons with a single trapped atom. We find strong correlations of the
detection of a heralding photon with a change in the quantum state of the atom
marking absorption of the quantum-correlated heralded photon. In coupling a
single absorber with a quantum light source, our experiment demonstrates
previously unexplored matter-light interaction, while opening up new avenues
towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure
Quantum internet using code division multiple access
A crucial open problem in large-scale quantum networks is how to efficiently
transmit quantum data among many pairs of users via a common data-transmission
medium. We propose a solution by developing a quantum code division multiple
access (q-CDMA) approach in which quantum information is chaotically encoded to
spread its spectral content, and then decoded via chaos synchronization to
separate different sender-receiver pairs. In comparison to other existing
approaches, such as frequency division multiple access (FDMA), the proposed
q-CDMA can greatly increase the information rates per channel used, especially
for very noisy quantum channels.Comment: 29 pages, 6 figure
Linear and nonlinear optical spectroscopy of a strongly-coupled microdisk-quantum dot system
A fiber taper waveguide is used to perform direct optical spectroscopy of a
microdisk-quantum-dot system, exciting the system through the photonic (light)
channel rather than the excitonic (matter) channel. Strong coupling, the regime
of coherent quantum interactions, is demonstrated through observation of vacuum
Rabi splitting in the transmitted and reflected signals from the cavity. The
fiber coupling method also allows the examination of the system's steady-state
nonlinear properties, where saturation of the cavity-QD response is observed
for less than one intracavity photon.Comment: adjusted references, added minor clarification
- …
