232 research outputs found

    Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK

    Get PDF
    Focal adhesion kinase (FAK) plays a critical role during vascular development because knockout of FAK in endothelial cells (ECs) is embryonic lethal. Surprisingly, tamoxifen-inducible conditional knockout of FAK in adult blood vessels (inducible EC–specific FAK knockout [i-EC-FAK-KO]) produces no vascular phenotype, and these animals are capable of developing a robust growth factor–induced angiogenic response. Although angiogenesis in wild-type mice is suppressed by pharmacological inhibition of FAK, i-EC-FAK-KO mice are refractory to this treatment, which suggests that adult i-EC-FAK-KO mice develop a compensatory mechanism to bypass the requirement for FAK. Indeed, expression of the FAK-related proline-rich tyrosine kinase 2 (Pyk2) is elevated and phosphorylated in i-EC-FAK-KO blood vessels. In cultured ECs, FAK knockdown leads to increased Pyk2 expression and, surprisingly, FAK kinase inhibition leads to increased Pyk2 phosphorylation. Pyk2 can functionally compensate for the loss of FAK because knockdown or pharmacological inhibition of Pyk2 disrupts angiogenesis in i-EC-FAK-KO mice. These studies reveal the adaptive capacity of ECs to switch to Pyk2-dependent signaling after deletion or kinase inhibition of FAK

    Histone deacetylase adaptation in single ventricle heart disease and a young animal model of right ventricular hypertrophy.

    Get PDF
    BackgroundHistone deacetylase (HDAC) inhibitors are promising therapeutics for various forms of cardiac diseases. The purpose of this study was to assess cardiac HDAC catalytic activity and expression in children with single ventricle (SV) heart disease of right ventricular morphology, as well as in a rodent model of right ventricular hypertrophy (RVH).MethodsHomogenates of right ventricle (RV) explants from non-failing controls and children born with a SV were assayed for HDAC catalytic activity and HDAC isoform expression. Postnatal 1-day-old rat pups were placed in hypoxic conditions, and echocardiographic analysis, gene expression, HDAC catalytic activity, and isoform expression studies of the RV were performed.ResultsClass I, IIa, and IIb HDAC catalytic activity and protein expression were elevated in the hearts of children born with a SV. Hypoxic neonatal rats demonstrated RVH, abnormal gene expression, elevated class I and class IIb HDAC catalytic activity, and protein expression in the RV compared with those in the control.ConclusionsThese data suggest that myocardial HDAC adaptations occur in the SV heart and could represent a novel therapeutic target. Although further characterization of the hypoxic neonatal rat is needed, this animal model may be suitable for preclinical investigations of pediatric RV disease and could serve as a useful model for future mechanistic studies

    Target cell-specific synaptic dynamics of excitatory to inhibitory neuron connections in supragranular layers of human neocortex.

    Get PDF
    Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, post-hoc fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs. SST-positive interneurons. We find that there are robust molecular differences in synapse-associated genes between these neuron types, and that individual presynaptic pyramidal neurons evoke postsynaptic responses with heterogeneous synaptic dynamics in different postsynaptic cell types. Using molecular identification with FISH and classifiers based on transcriptomically identified PVALB neurons analyzed by Patch-seq, we find that PVALB neurons typically show depressing synaptic characteristics, whereas other interneuron types including SST-positive neurons show facilitating characteristics. Together, these data support the existence of target cell-specific synaptic properties in human cortex that are similar to rodent, thereby indicating evolutionary conservation of local circuit connectivity motifs from excitatory to inhibitory neurons and their synaptic dynamics

    Impact of SARS-CoV-2 Vaccination on Inflammatory Bowel Disease Activity and Development of Vaccine-Related Adverse Events: Results From PREVENT-COVID

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 vaccination is recommended for all individuals with inflammatory bowel disease (IBD), including those on immunosuppressive therapies; however, little is known about vaccine safety and efficacy in these patients or the impact of vaccination on IBD disease course.We evaluated coronavirus disease 2019 (COVID-19) vaccine–related adverse events (AEs) and the effect of vaccination on IBD disease course among participants in the PREVENT-COVID (Partnership to Report Effectiveness of Vaccination in populations Excluded from iNitial Trials of COVID) study, a prospective, observational cohort study. Localized and systemic reactions were assessed via questionnaire. Disease flare was defined by worsening IBD symptoms and change in IBD medications. Outcomes were stratified by vaccine type and IBD medication classes.A total of 3316 individuals with IBD received at least 1 COVID-19 vaccine. Injection site tenderness (68%) and fatigue (46% dose 1, 68% dose 2) were the most commonly reported localized and systemic AEs after vaccination. Severe localized and systemic vaccine-related AEs were rare. The mRNA-1273 vaccine was associated with significantly greater severe AEs at dose 2 (localized 4% vs 2%, systemic 15% vs 10%; P < .001 for both). Prior COVID-19 infection, female sex, and vaccine type were associated with severe systemic reactions to dose 1, while age <50 years, female sex, vaccine type, and antitumor necrosis factor and vedolizumab use were associated with severe systemic reactions to dose 2. Overall rates (2%) of IBD flare were low following vaccination.Our findings provide reassurance that the severe acute respiratory syndrome coronavirus 2 vaccine is safe and well tolerated among individuals with IBD, which may help to combat vaccine hesitancy and increase vaccine confidence.The severe acute respiratory syndrome coronavirus 2 vaccine is safe and well tolerated among individuals with inflammatory bowel disease (IBD). Severe localized and systemic vaccine-related adverse events were rare, and rates of IBD flare were low (2%) following severe acute respiratory syndrome coronavirus 2 vaccination in a cohort of 3316 participants with IBD

    Copy Number Variation of KIR Genes Influences HIV-1 Control

    Get PDF
    The authors that the number of activating and inhibitory KIR genes varies between individuals and plays a role in the regulation of immune mechanisms that determine HIV-1 control

    Low Rates of Breakthrough COVID-19 Infection After SARS-CoV-2 Vaccination in Patients With Inflammatory Bowel Disease

    Get PDF
    We demonstrate low rates of breakthrough coronavirus disease 2019 (COVID-19) infection and mild course of illness following severe acute respiratory syndrome coronavirus 2 vaccination in a large cohort of inflammatory bowel disease patients. Residence in southern United States and lower median anti-receptor binding antibody level were associated with development of COVID-19

    Dynamic Switch of Negative Feedback Regulation in Drosophila Akt–TOR Signaling

    Get PDF
    Akt represents a nodal point between the Insulin receptor and TOR signaling, and its activation by phosphorylation controls cell proliferation, cell size, and metabolism. The activity of Akt must be carefully balanced, as increased Akt signaling is frequently associated with cancer and as insufficient Akt signaling is linked to metabolic disease and diabetes mellitus. Using a genome-wide RNAi screen in Drosophila cells in culture, and in vivo analyses in the third instar wing imaginal disc, we studied the regulatory circuitries that define dAkt activation. We provide evidence that negative feedback regulation of dAkt occurs during normal Drosophila development in vivo. Whereas in cell culture dAkt is regulated by S6 Kinase (S6K)–dependent negative feedback, this feedback inhibition only plays a minor role in vivo. In contrast, dAkt activation under wild-type conditions is defined by feedback inhibition that depends on TOR Complex 1 (TORC1), but is S6K–independent. This feedback inhibition is switched from TORC1 to S6K only in the context of enhanced TORC1 activity, as triggered by mutations in tsc2. These results illustrate how the Akt–TOR pathway dynamically adapts the routing of negative feedback in response to the activity load of its signaling circuit in vivo
    corecore