84 research outputs found

    European Quality in Preclinical Data (EQIPD):Een breed consortium voor het verbeteren van de kwaliteit van proefdieronderzoek

    Get PDF
    Het merendeel van de dierstudies, zowel in de industrie als in de academische wereld, wordt uitgevoerd ten behoeve van de menselijke gezondheid: we gebruiken ze als voorspeller voor effecten in mensen, bijvoorbeeld bij de ontwikkeling van nieuwe geneesmiddelen of medische interventies, in de toxicologie, en ook in fundamenteel onderzoek

    Designing, conducting, and reporting reproducible animal experiments

    Get PDF
    In biomedicine and many other fields, there are growing concerns around the reproducibility of research findings, with many researchers being unable to replicate their own or others' results. This raises important questions as to the validity and usefulness of much published research. In this review, we aim to engage researchers in the issue of research reproducibility and equip them with the necessary tools to increase the reproducibility of their research. We first highlight the causes and potential impact of non-reproducible research and emphasise the benefits of working reproducibly for the researcher and broader research community. We address specific targets for improvement and steps that individual researchers can take to increase the reproducibility of their work. We next provide recommendations for improving the design and conduct of experiments, focusing on in vivo animal experiments. We describe common sources of poor internal validity of experiments and offer practical guidance for limiting these potential sources of bias at different experimental stages, as well as discussing other important considerations during experimental design. We provide a list of key resources available to researchers to improve experimental design, conduct, and reporting. We then discuss the importance of open research practices such as study preregistration and the use of preprints and describe recommendations around data management and sharing. Our review emphasises the importance of reproducible work and aims to empower every individual researcher to contribute to the reproducibility of research in their field.</p

    Understanding changes in echocardiographic parameters at different ages following fetal growth restriction:a systematic review and meta-analysis

    Get PDF
    Fetal growth restriction (FGR) increases cardiovascular risk by cardiac remodeling and programming. This systematic review and meta-analysis across species examines the use of echocardiography in FGR offspring at different ages. PubMed and Embase.com were searched for animal and human studies reporting on echocardiographic parameters in placental insufficiency- induced FGR offspring. We included six animal and 49 human studies. Although unable to perform a meta-analysis of animal studies because of insufficient number of studies per individual outcome, all studies showed left ventricular dysfunction. Our meta-analyses of human studies revealed a reduced left ventricular mass, interventricular septum thickness, mitral annular peak velocity, and mitral lateral early diastolic velocity at neonatal age. No echocardiographic differences during childhood were observed, although the small age range and number of studies limited these analyses. Only two studies at adult age were performed. Meta-regression on other influential factors was not possible due to underreporting. The few studies on myocardial strain analysis showed small changes in global longitudinal strain in FGR offspring. The quality of the human studies was considered low and the risk of bias in animal studies was mostly unclear. Echocardiography may offer a noninvasive tool to detect early signs of cardiovascular predisposition following FGR. Clinical implementation yet faces multiple challenges including identification of the most optimal timing and the exact relation to long-term cardiovascular function in which echocardiography alone might be limited to reflect a child's vascular status. Future research should focus on myocardial strain analysis and the combination of other (non)imaging techniques for an improved risk estimation.</p

    Understanding changes in echocardiographic parameters at different ages following fetal growth restriction:a systematic review and meta-analysis

    Get PDF
    Fetal growth restriction (FGR) increases cardiovascular risk by cardiac remodeling and programming. This systematic review and meta-analysis across species examines the use of echocardiography in FGR offspring at different ages. PubMed and Embase.com were searched for animal and human studies reporting on echocardiographic parameters in placental insufficiency- induced FGR offspring. We included six animal and 49 human studies. Although unable to perform a meta-analysis of animal studies because of insufficient number of studies per individual outcome, all studies showed left ventricular dysfunction. Our meta-analyses of human studies revealed a reduced left ventricular mass, interventricular septum thickness, mitral annular peak velocity, and mitral lateral early diastolic velocity at neonatal age. No echocardiographic differences during childhood were observed, although the small age range and number of studies limited these analyses. Only two studies at adult age were performed. Meta-regression on other influential factors was not possible due to underreporting. The few studies on myocardial strain analysis showed small changes in global longitudinal strain in FGR offspring. The quality of the human studies was considered low and the risk of bias in animal studies was mostly unclear. Echocardiography may offer a noninvasive tool to detect early signs of cardiovascular predisposition following FGR. Clinical implementation yet faces multiple challenges including identification of the most optimal timing and the exact relation to long-term cardiovascular function in which echocardiography alone might be limited to reflect a child's vascular status. Future research should focus on myocardial strain analysis and the combination of other (non)imaging techniques for an improved risk estimation.</p

    Reporting of anaesthesia and pain management in preclinical large animal models of articular cartilage repair - A long way to go

    Get PDF
    Animal models continue to be used to investigate cartilage repair strategies. Adequate anaesthesia and pain management are essential in order to guarantee acceptable animal welfare as well as reproducible experimental results. This systematic review evaluates reporting of anaesthesia and pain management in surgical large animal models (horse, pig, dog, goat and sheep) of (osteo)chondral repair. Manuscripts published between 2015 and 2020 were included after a comprehensive search strategy. Data were evaluated using descriptive statistics and qualitative review. Out of 223 eligible studies, 220 studies contained incomplete information on anaesthetic and pain management. Pre-, intra- and post-operative analgesia were not mentioned in 68%, 94%, and 64% of manuscripts respectively. A total of 176 studies reported that animals underwent general anaesthesia during surgery. Surprisingly, 30% of these articles did not provide any detail on anaesthetic management, while 37% reported using inhalant, hypnotic or sedative drugs only, without mention of analgesics. Pain monitoring was not reported in 87% of manuscripts. The vast majority of preclinical large animal studies on cartilage repair did not meet veterinary clinical standards for anaesthesia and analgesia, and failed to report according to the ARRIVE international guidelines. In light of serious welfare, ethical and translational validity concerns, improvement is urgently needed

    Diannexin Protects against Renal Ischemia Reperfusion Injury and Targets Phosphatidylserines in Ischemic Tissue

    Get PDF
    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo

    Pharmacological modulation of conditioned fear in the fear-potentiated startle test: a systematic review and meta-analysis of animal studies

    Get PDF
    RATIONALE AND OBJECTIVES: Fear conditioning is an important aspect in the pathophysiology of anxiety disorders. The fear-potentiated startle test is based on classical fear conditioning and over the years, a broad range of drugs have been tested in this test. Synthesis of the available data may further our understanding of the neurotransmitter systems that are involved in the expression of conditioned fear. METHODS: Following a comprehensive search in Medline and Embase, we included 68 research articles that reported on 103 drugs, covering 56 different drug classes. The systematic review was limited to studies using acute, systemic drug administration in naive animals. RESULTS: Qualitative data synthesis showed that most clinically active anxiolytics, but not serotonin-reuptake inhibitors, reduced cued fear. Anxiogenic drugs increased fear potentiation in 35% of the experiments, reduced fear potentiation in 29% of the experiments, and were without effect in 29% of the experiments. Meta-analyses could be performed for five drug classes and showed that benzodiazepines, buspirone, 5-HT 1A agonists, 5-HT 1A antagonists, and mGluR2,3 agonists reduced cued conditioned fear. The non-cued baseline startle response, which may reflect contextual anxiety, was only significantly reduced by benzodiazepines and 5-HT 1A antagonists. No associations were found between drug effects and methodological characteristics, except for strain. CONCLUSIONS: The fear-potentiated startle test appears to have moderate to high predictive validity and may serve as a valuable tool for the development of novel anxiolytics. Given the limited available data, the generally low study quality and high heterogeneity additional studies are warranted to corroborate the findings of this review
    • …
    corecore