148 research outputs found

    Impaired Insulin/IGF1 Signaling Extends Life Span by Promoting Mitochondrial L-Proline Catabolism to Induce a Transient ROS Signal

    Get PDF
    SummaryImpaired insulin and IGF-1 signaling (iIIS) in C. elegans daf-2 mutants extends life span more than 2-fold. Constitutively, iIIS increases mitochondrial activity and reduces reactive oxygen species (ROS) levels. By contrast, acute impairment of daf-2 in adult C. elegans reduces glucose uptake and transiently increases ROS. Consistent with the concept of mitohormesis, this ROS signal causes an adaptive response by inducing ROS defense enzymes (SOD, catalase), culminating in ultimately reduced ROS levels despite increased mitochondrial activity. Inhibition of this ROS signal by antioxidants reduces iIIS-mediated longevity by up to 60%. Induction of the ROS signal requires AAK-2 (AMPK), while PMK-1 (p38) and SKN-1 (NRF-2) are needed for the retrograde response. IIIS upregulates mitochondrial L-proline catabolism, and impairment of the latter impairs the life span-extending capacity of iIIS while L-proline supplementation extends C. elegans life span. Taken together, iIIS promotes L-proline metabolism to generate a ROS signal for the adaptive induction of endogenous stress defense to extend life span

    Estimation of urinary stone composition by automated processing of CT images

    Full text link
    The objective of this article was developing an automated tool for routine clinical practice to estimate urinary stone composition from CT images based on the density of all constituent voxels. A total of 118 stones for which the composition had been determined by infrared spectroscopy were placed in a helical CT scanner. A standard acquisition, low-dose and high-dose acquisitions were performed. All voxels constituting each stone were automatically selected. A dissimilarity index evaluating variations of density around each voxel was created in order to minimize partial volume effects: stone composition was established on the basis of voxel density of homogeneous zones. Stone composition was determined in 52% of cases. Sensitivities for each compound were: uric acid: 65%, struvite: 19%, cystine: 78%, carbapatite: 33.5%, calcium oxalate dihydrate: 57%, calcium oxalate monohydrate: 66.5%, brushite: 75%. Low-dose acquisition did not lower the performances (P < 0.05). This entirely automated approach eliminates manual intervention on the images by the radiologist while providing identical performances including for low-dose protocols

    Nondestructive analysis of urinary calculi using micro computed tomography

    Get PDF
    BACKGROUND: Micro computed tomography (micro CT) has been shown to provide exceptionally high quality imaging of the fine structural detail within urinary calculi. We tested the idea that micro CT might also be used to identify the mineral composition of urinary stones non-destructively. METHODS: Micro CT x-ray attenuation values were measured for mineral that was positively identified by infrared microspectroscopy (FT-IR). To do this, human urinary stones were sectioned with a diamond wire saw. The cut surface was explored by FT-IR and regions of pure mineral were evaluated by micro CT to correlate x-ray attenuation values with mineral content. Additionally, intact stones were imaged with micro CT to visualize internal morphology and map the distribution of specific mineral components in 3-D. RESULTS: Micro CT images taken just beneath the cut surface of urinary stones showed excellent resolution of structural detail that could be correlated with structure visible in the optical image mode of FT-IR. Regions of pure mineral were not difficult to find by FT-IR for most stones and such regions could be localized on micro CT images of the cut surface. This was not true, however, for two brushite stones tested; in these, brushite was closely intermixed with calcium oxalate. Micro CT x-ray attenuation values were collected for six minerals that could be found in regions that appeared to be pure, including uric acid (3515 – 4995 micro CT attenuation units, AU), struvite (7242 – 7969 AU), cystine (8619 – 9921 AU), calcium oxalate dihydrate (13815 – 15797 AU), calcium oxalate monohydrate (16297 – 18449 AU), and hydroxyapatite (21144 – 23121 AU). These AU values did not overlap. Analysis of intact stones showed excellent resolution of structural detail and could discriminate multiple mineral types within heterogeneous stones. CONCLUSIONS: Micro CT gives excellent structural detail of urinary stones, and these results demonstrate the feasibility of identifying and localizing most of the common mineral types found in urinary calculi using laboratory CT

    Antidepressants of the Serotonin-Antagonist Type Increase Body Fat and Decrease Lifespan of Adult Caenorhabditis elegans

    Get PDF
    It was recently suggested that specific antidepressants of the serotonin-antagonist type, namely mianserin and methiothepin, may exert anti-aging properties and specifically extend lifespan of the nematode C.elegans by causing a state of perceived calorie restriction (Petrascheck M, Ye X, Buck LB: An antidepressant that extends lifespan in adult Caenorhabditis elegans; Nature, Nov 22, 2007;450(7169):553–6, PMID 18033297). Using the same model organism, we instead observe a reduction of life expectancy when employing the commonly used, standardized agar-based solid-phase assay while applying the same or lower concentrations of the same antidepressants. Consistent with a well-known side-effect of these compounds in humans, antidepressants not only reduced lifespan but also increased body fat accumulation in C. elegans reflecting the mammalian phenotype. Taken together and in conflict with previously published findings, we find that antidepressants of the serotonin-antagonist type not only promote obesity, but also decrease nematode lifespan

    The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway

    Full text link
    [EN] Members of the Junctophilin (JPH) protein family have emerged as key actors in all excitable cells, with crucial implications for human pathophysiology. In mammals, this family consists of four members (JPH1-JPH4) that are differentially expressed throughout excitable cells. The analysis of knockout mice lacking JPH subtypes has demonstrated their essential contribution to physiological functions in skeletal and cardiac muscles and in neurons. Moreover, mutations in the human JPH2 gene are associated with hypertrophic and dilated cardiomyopathies; mutations in JPH3 are responsible for the neurodegenerative Huntington's disease-like-2 (HDL2), whereas JPH1 acts as a genetic modifier in Charcot-Marie-Tooth 2K peripheral neuropathy. Drosophila melanogaster has a single junctophilin (jp) gene, as is the case in all invertebrates, which might retain equivalent functions of the four homologous JPH genes present in mammalian genomes. Therefore, owing to the lack of putatively redundant genes, a jp Drosophila model could provide an excellent platform to model the Junctophilin-related diseases, to discover the ancestral functions of the JPH proteins and to reveal new pathways. By up-and downregulation of Jp in a tissue-specific manner in Drosophila, we show that altering its levels of expression produces a phenotypic spectrum characterized by muscular deficits, dilated cardiomyopathy and neuronal alterations. Importantly, our study has demonstrated that Jp modifies the neuronal degeneration in a Drosophila model of Huntington's disease, and it has allowed us to uncover an unsuspected functional relationship with the Notch pathway. Therefore, this Drosophila model has revealed new aspects of Junctophilin function that can be relevant for the disease mechanisms of their human counterparts.This work was supported by project grants from Association Francaise contre les Myopathies [AFM 18540 to M.I.G.], Instituto de Salud Carlos III (ISCIII) [PI12/000453 and PI15/000187 to C.E.], Generalitat Valenciana [PROMETEOII/2014/067 to R.A. as partner], and a collaborative grant from the International Rare Diseases Research Consortium (IRDiRC) and ISCIII [IR11/TREAT-CMT to M.I.G. (partner 12) and C.E. (partner 6)]. C.E. has a 'Miguel Servet' contract funded by the ISCIII and Centro de Investigacion Principe Felipe [CPII14/00002]; M.C. was the recipient of a Santiago Grisolia award from Generalitat Valenciana [GrisoliaP/2013/A/044].Calpena-Corpas, E.; Lopez Del Amo, V.; Chakraborty M; Llamusi, B.; Artero R; Espinos, C.; Galindo, MI. (2018). The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Disease Models & Mechanisms. 11(1). https://doi.org/10.1242/dmm.029082S11

    Cinnamomum cassia Bark in Two Herbal Formulas Increases Life Span in Caenorhabditis elegans via Insulin Signaling and Stress Response Pathways

    Get PDF
    Background: Proving the efficacy and corresponding mode of action of herbal supplements is a difficult challenge for evidence-based herbal therapy. A major hurdle is the complexity of herbal preparations, many of which combine multiple herbs, particularly when the combination is assumed to be vitally important to the effectiveness of the herbal therapy. This issue may be addressed through the use of contemporary methodology and validated animal models. Methods and Principal Findings: In this study, two commonly used traditional herbal formulas, Shi Quan Da Bu Tang (SQDB) and Huo Luo Xiao Ling Dan (HLXL) were evaluated using a survival assay and oxidative stress biomarkers in a well-established C. elegans model of aging. HLXL is an eleven herb formula modified from a top-selling traditional herbal formula for the treatment of arthritic joint pain. SQDB consists of ten herbs often used for fatigue and energy, particularly in the aged. We demonstrate here that SQDB significantly extend life span in a C. elegans model of aging. Among all individual herbs tested, two herbs Cinnamomum cassia bark (Chinese pharmaceutical name: Cinnamomi Cortex, CIN) and Panax ginseng root (Chinese pharmaceutical name: Ginseng Radix, GS) significantly extended life span in C. elegans. CIN in both SQDB and HLXL formula extended life span via modulation of multiple longevity assurance genes, including genes involved in insulin signaling and stress response pathways. All the life-span-extending herbs (SQDB, CIN and GS) also attenuated levels of H2O2 and enhanced small heat shock protein expression. Furthermore, the life spanextending herbs significantly delayed human amyloid beta (Aβ)-induced toxicity in transgenic C. elegans expressing human Aβ. Conclusion/Significance:These results validate an invertebrate model for rapid, systematic evaluation of commonly used Chinese herbal formulations and may provide insight for designing future evidence-based herbal therapy(s). Copyright: © 2010 Yu et al.published_or_final_versio
    • …
    corecore