81,933 research outputs found
GhostVLAD for set-based face recognition
The objective of this paper is to learn a compact representation of image
sets for template-based face recognition. We make the following contributions:
first, we propose a network architecture which aggregates and embeds the face
descriptors produced by deep convolutional neural networks into a compact
fixed-length representation. This compact representation requires minimal
memory storage and enables efficient similarity computation. Second, we propose
a novel GhostVLAD layer that includes {\em ghost clusters}, that do not
contribute to the aggregation. We show that a quality weighting on the input
faces emerges automatically such that informative images contribute more than
those with low quality, and that the ghost clusters enhance the network's
ability to deal with poor quality images. Third, we explore how input feature
dimension, number of clusters and different training techniques affect the
recognition performance. Given this analysis, we train a network that far
exceeds the state-of-the-art on the IJB-B face recognition dataset. This is
currently one of the most challenging public benchmarks, and we surpass the
state-of-the-art on both the identification and verification protocols.Comment: Accepted by ACCV 201
Effect of mass asymmetry on the mass dependence of balance energy
We demonstrate the role of the mass asymmetry on the balance energy (Ebal) by
studying asymmetric reactions throughout the periodic table and over entire
colliding geometry. Our results, which are almost independent of the system
size and as well as of the colliding geometries indicate a sizeable effect of
the asymmetry of the reaction on the balance energy.Comment: Journal of Physics - Conference Series - Online end of March (2011
Canonical Quantization of the Self-Dual Model coupled to Fermions
This paper is dedicated to formulate the interaction picture dynamics of the
self-dual field minimally coupled to fermions. To make this possible, we start
by quantizing the free self-dual model by means of the Dirac bracket
quantization procedure. We obtain, as result, that the free self-dual model is
a relativistically invariant quantum field theory whose excitations are
identical to the physical (gauge invariant) excitations of the free
Maxwell-Chern-Simons theory. The model describing the interaction of the
self-dual field minimally coupled to fermions is also quantized through the
Dirac bracket quantization procedure. One of the self-dual field components is
found not to commute, at equal times, with the fermionic fields. Hence, the
formulation of the interaction picture dynamics is only possible after the
elimination of the just mentioned component. This procedure brings, in turns,
two new interaction terms, which are local in space and time while
non-renormalizable by power counting. Relativistic invariance is tested in
connection with the elastic fermion-fermion scattering amplitude. We prove that
all the non-covariant pieces in the interaction Hamiltonian are equivalent to
the covariant minimal interaction of the self-dual field with the fermions. The
high energy behavior of the self-dual field propagator corroborates that the
coupled theory is non-renormalizable. Certainly, the self-dual field minimally
coupled to fermions bears no resemblance with the renormalizable model defined
by the Maxwell-Chern-Simons field minimally coupled to fermions.Comment: 16 pages, no special macros, no corrections in the pape
Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis.
During epithelial ovarian cancer (EOC) progression, intraperitoneally disseminating tumor cells and multicellular aggregates (MCAs) present in ascites fluid adhere to the peritoneum and induce retraction of the peritoneal mesothelial monolayer prior to invasion of the collagen-rich submesothelial matrix and proliferation into macro-metastases. Clinical studies have shown heterogeneity among EOC metastatic units with respect to cadherin expression profiles and invasive behavior; however, the impact of distinct cadherin profiles on peritoneal anchoring of metastatic lesions remains poorly understood. In the current study, we demonstrate that metastasis-associated behaviors of ovarian cancer cells and MCAs are influenced by cellular cadherin composition. Our results show that mesenchymal N-cadherin-expressing (Ncad+) cells and MCAs invade much more efficiently than E-cadherin-expressing (Ecad+) cells. Ncad+ MCAs exhibit rapid lateral dispersal prior to penetration of three-dimensional collagen matrices. When seeded as individual cells, lateral migration and cell-cell junction formation precede matrix invasion. Neutralizing the Ncad extracellular domain with the monoclonal antibody GC-4 suppresses lateral dispersal and cell penetration of collagen gels. In contrast, use of a broad-spectrum matrix metalloproteinase (MMP) inhibitor (GM6001) to block endogenous membrane type 1 matrix metalloproteinase (MT1-MMP) activity does not fully inhibit cell invasion. Using intact tissue explants, Ncad+ MCAs were also shown to efficiently rupture peritoneal mesothelial cells, exposing the submesothelial collagen matrix. Acquisition of Ncad by Ecad+ cells increased mesothelial clearance activity but was not sufficient to induce matrix invasion. Furthermore, co-culture of Ncad+ with Ecad+ cells did not promote a 'leader-follower' mode of collective cell invasion, demonstrating that matrix remodeling and creation of invasive micro-tracks are not sufficient for cell penetration of collagen matrices in the absence of Ncad. Collectively, our data emphasize the role of Ncad in intraperitoneal seeding of EOC and provide the rationale for future studies targeting Ncad in preclinical models of EOC metastasis
Anisotropy of Resonant Inelastic X-Ray Scattering at the K Edge of Si:Theoretical Analysis
We investigate theoretically the resonant inelastic x-ray scattering (RIXS)
at the edge of Si on the basis of an ab initio calculation. We calculate
the RIXS spectra with systematically varying transfered-momenta,
incident-photon energy and incident-photon polarization. We confirm the
anisotropy of the experimental spectra by Y. Ma {\it et al}. (Phys. Rev. Lett.
74, 478 (1995)), providing a quantitative explanation of the spectra.Comment: 18 pages, 11 figure
A new concept for high-cycle-life LEO: Rechargeable MnO2-hydrogen
The nickel-hydrogen secondary battery system, developed in the early 1970s, has become the system of choice for geostationary earth orbit (GEO) applications. However, for low earth orbit (LEO) satellites with long expected lifetimes the nickel positive limits performance. This requires derating of the cell to achieve very long cycle life. A new system, rechargeable MnO2-Hydrogen, which does not require derating, is described here. For LEO applications, it promises to have longer cycle life, high rate capability, a higher effective energy density, and much lower self-discharge behavior than those of the nickel-hydrogen system
Instability of a two-dimensional extremal black hole
We consider the perturbation of tachyon about the extremal ground state of a
two-dimensional (2D) electrically charged black hole. It is found that the
presenting potential to on-coming tachyonic wave takes a double-humped barrier
well. This allows an exponentially growing mode with respect to time. This
extremal ground state is classically unstable. We conclude that the 2D extremal
electrically charged black hole cannot be a candidate for the stable endpoint
of the Hawking evaporation.Comment: 9 pages 2 figures, RevTeX, to be published in Phys. Rev D, to obtain
gifures contact Author ([email protected]
Functional rescue of dystrophin deficiency in mice caused by frameshift mutations using Campylobacter jejuni Cas9
Duchenne muscular dystrophy (DMD) is a fatal, X-linked muscle wasting disease caused by mutations in the DMD gene. In 51% of DMD cases, a reading frame is disrupted because of deletion of several exons. Here, we show that CjCas9 derived from Campylobacter jejuni can be
used as a gene editing tool to correct an out-of-frame Dmd exon in Dmd knockout mice. Herein, we used Cas9 derived from S. pyogenes to generate Dmd knockout (KO) mice with a frameshift mutation in Dmd gene. Then, we expressed CjCas9, its single-guide RNA, and the eGFP gene
in the tibialis anterior muscle of the Dmd KO mice using an all-in-one adeno-associated virus (AAV) vector. CjCas9 cleaved the target site in the Dmd gene efficiently in vivo and induced small insertions or deletions at the target site. This treatment resulted in conversion of the
disrupted Dmd reading frame from out-of-frame to in-frame, leading to the expression of dystrophin in the sarcolemma. Importantly, muscle strength was enhanced in the CjCas9-treated muscles, without off-target mutations, indicating high efficiency and specificity of CjCas9. This work suggests that in vivo DMD frame correction, mediated by CjCas9 has great potential for the treatment of DMD and other neuromuscular diseases
Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient
We report on the anomalous Hall coefficient and longitudinal resistivity
scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055).
As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing
temperature, we find n ~ 2 to be consistent with recent theories on the
intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing
temperatures far above the optimum, we note n > 3, similar behavior to certain
inhomogeneous systems. This observation of atypical behavior agrees well with
characteristic features attributable to spherical resonance from metallic
inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure
- …