4,341 research outputs found

    Electromagnetic Moments of the Baryon Decuplet

    Full text link
    We compute the leading contributions to the magnetic dipole and electric quadrupole moments of the baryon decuplet in chiral perturbation theory. The measured value for the magnetic moment of the Ω−\Omega^- is used to determine the local counterterm for the magnetic moments. We compare the chiral perturbation theory predictions for the magnetic moments of the decuplet with those of the baryon octet and find reasonable agreement with the predictions of the large--NcN_c limit of QCD. The leading contribution to the quadrupole moment of the Δ\Delta and other members of the decuplet comes from one--loop graphs. The pionic contribution is shown to be proportional to IzI_z (and so will not contribute to the quadrupole moment of I=0I=0 nuclei), while the contribution from kaons has both isovector and isoscalar components. The chiral logarithmic enhancement of both pion and kaon loops has a coefficient that vanishes in the SU(6)SU(6) limit. The third allowed moment, the magnetic octupole, is shown to be dominated by a local counterterm with corrections arising at two loops. We briefly mention the strange counterparts of these moments.Comment: Uses harvmac.tex, 15 pages with 3 PostScript figures packed using uufiles. UCSD/PTH 93-22, QUSTH-93-05, Duke-TH-93-5

    Hadron Spectrum with Wilson fermions

    Get PDF
    We present results of a high statistics study of the quenched spectrum using Wilson fermions at ÎČ=6.0\beta=6.0 on 323×6432^3 \times 64 lattices. We calculate the masses of mesons and baryons composed of both degenerate and non-degenerate quarks. Using non-degenerate quark combinations allows us to study baryon mass splittings in detail. We find significant deviations from the lowest order chiral expansion, deviations that are consistent with the expectations of quenched chiral perturbation theory. We find that there is a ∌20\sim 20% systematic error in the extracted value of msm_s, depending on the meson mass ratio used to set its value. Using the largest estimate of msm_s we find that the extrapolated octet mass-splittings are in agreement with the experimental values, as is MΔ−MNM_\Delta - M_N, while the decuplet splittings are 30% smaller than experiment. Combining our results with data from the GF11 collaboration we find considerable ambiguity in the extrapolation to the continuum limit. Our preferred values are MN/Mρ=1.38(7)M_N / M_\rho = 1.38(7) and MΔ/Mρ=1.73(10)M_\Delta / M_\rho = 1.73(10), suggesting that the quenched approximation is good to only ∌10−15\sim 10-15%. We also analyze the O(ma)O(ma) discretization errors in heavy quark masses.Comment: 52 pages. Tex. Modified "axis" source for figures also included. Needs macro packages lanlmac and epsf. Uses hyperbasics if available. Significant number of typographical errors correcte

    Magnetic moments of the SU(3) decuplet baryons in the chiral quark-soliton model

    Get PDF
    Magnetic moments of baryons are studied within the chiral quark soliton model with special emphasis on the decuplet of baryons. The model is used to identify all symmetry breaking terms proportional to msm_{\rm s}. Sum rules for the magnetic moments are derived. A ``model-independent'' analysis of the symmetry breaking terms is performed and finally model calculations are presented, which show the importance of the rotational 1/Nc1/N_{\rm c} corrections for cranking of the soliton.Comment: 22 pages, RevTex. The final version accepted for publication in Phys. Rev.

    Terahertz Magneto Optical Polarization Modulation Spectroscopy

    Full text link
    We report the development of new terahertz techniques for rapidly measuring the complex Faraday angle in systems with broken time-reversal symmetry using the cyclotron resonance of a GaAs two-dimensional electron gas in a magnetic field as a system for demonstration of performance. We have made polarization modulation, high sensitivity (< 1 mrad) narrow band rotation measurements with a CW optically pumped molecular gas laser, and by combining the distinct advantages of terahertz (THz) time domain spectroscopy and polarization modulation techniques, we have demonstrated rapid broadband rotation measurements to < 5 mrad precision.Comment: 25 pages including 7 figures, introduces use of rotating polarizer with THz TDS for Complex Faraday Angle determinatio

    Understanding Unauthorized Access using Fine-Grained Human-Computer Interaction Data

    Get PDF
    Unauthorized Data Access (UDA) by an internal employee is a major threat to an organization. Regardless of whether the individuals engaged in UDA with malicious intent or not, real-time identification of UDA events and anomalous behaviors is extremely difficult. For example, various artificial intelligence methods for detecting insider threat UDA have become readily available; while useful, such methods rely on post hoc analysis of the past (e.g., unsupervised learning algorithms on access logs). This research-in-progress note reports on if the analysis of Human-Computer Interaction (HCI) behaviors, which have been empirically validated in various studies to reveal hidden cognitive state, can be utilized as a method to detect UDAs. To examine this, an experimental design was required that would grant the subjects an opportunity to engage in UDA events while tracking the HCI behaviors in an unobtrusive manner. Background, experimental design, study execution, preliminary results, and future research plans are presented

    Nucleon axial charge from quenched lattice QCD with domain wall fermions

    Full text link
    We present a quenched lattice calculation of the nucleon isovector vector and axial-vector charges gV and gA. The chiral symmetry of domain wall fermions makes the calculation of the nucleon axial charge particularly easy since the Ward-Takahashi identity requires the vector and axial-vector currents to have the same renormalization, up to lattice spacing errors of order O(a^2). The DBW2 gauge action provides enhancement of the good chiral symmetry properties of domain wall fermions at larger lattice spacing than the conventional Wilson gauge action. Taking advantage of these methods and performing a high statistics simulation, we find a significant finite volume effect between the nucleon axial charges calculated on lattices with (1.2 fm)^3 and (2.4 fm)^3 volumes (with lattice spacing, a, of about 0.15 fm). On the large volume we find gA = 1.212 +/- 0.027(statistical error) +/- 0.024(normalization error). The quoted systematic error is the dominant (known) one, corresponding to current renormalization. We discuss other possible remaining sources of error. This theoretical first principles calculation, which does not yet include isospin breaking effects, yields a value of gA only a little bit below the experimental one, 1.2670 +/- 0.0030.Comment: 38 pages, 12 figures, 9 tables, Revtex. Version accepted for publication in Physical Review

    Quantifying the impact of climate change on drought regimes using the Standardised Precipitation Index

    Get PDF
    The study presents a methodology to characterise short- or long-term drought events, designed to aid understanding of how climate change may affect future risk. An indicator of drought magnitude, combining parameters of duration, spatial extent and intensity, is presented based on the Standardised Precipitation Index (SPI). The SPI is applied to observed (1955–2003) and projected (2003–2050) precipitation data from the Community Integrated Assessment System (CIAS). Potential consequences of climate change on drought regimes in Australia, Brazil, China, Ethiopia, India, Spain, Portugal and the USA are quantified. Uncertainty is assessed by emulating a range of global circulation models to project climate change. Further uncertainty is addressed through the use of a high-emission scenario and a low stabilisation scenario representing a stringent mitigation policy. Climate change was shown to have a larger effect on the duration and magnitude of long-term droughts, and Australia, Brazil, Spain, Portugal and the USA were highlighted as being particularly vulnerable to multi-year drought events, with the potential for drought magnitude to exceed historical experience. The study highlights the characteristics of drought which may be more sensitive under climate change. For example, on average, short-term droughts in the USA do not become more intense but are projected to increase in duration. Importantly, the stringent mitigation scenario had limited effect on drought regimes in the first half of the twenty-first century, showing that adaptation to drought risk will be vital in these regions

    Shapes, contact angles, and line tensions of droplets on cylinders

    Full text link
    Using an interface displacement model we calculate the shapes of nanometer-size liquid droplets on homogeneous cylindrical surfaces. We determine effective contact angles and line tensions, the latter defined as excess free energies per unit length associated with the two contact lines at the ends of the droplet. The dependences of these quantities on the cylinder radius and on the volume of the droplets are analyzed.Comment: 26 pages, RevTeX, 10 Figure

    High pressure transport properties of the topological insulator Bi2Se3

    Full text link
    We report x-ray diffraction, electrical resistivity, and magnetoresistance measurements on Bi2Se3 under high pressure and low temperature conditions. Pressure induces profound changes in both the room temperature value of the electrical resistivity as well as the temperature dependence of the resistivity. Initially, pressure drives Bi2Se3 towards increasingly insulating behavior and then, at higher pressures, the sample appears to enter a fully metallic state coincident with a change in the crystal structure. Within the low pressure phase, Bi2Se3 exhibits an unusual field dependence of the transverse magnetoresistance that is positive at low fields and becomes negative at higher fields. Our results demonstrate that pressures below 8 GPa provide a non-chemical means to controllably reduce the bulk conductivity of Bi2Se3

    Scaling, Multiscaling, and Nontrivial Exponents in Inelastic Collision Processes

    Full text link
    We investigate velocity statistics of homogeneous inelastic gases using the Boltzmann equation. Employing an approximate uniform collision rate, we obtain analytic results valid in arbitrary dimension. In the freely evolving case, the velocity distribution is characterized by an algebraic large velocity tail, P(v,t) ~ v^{-sigma}. The exponent sigma(d,epsilon), a nontrivial root of an integral equation, varies continuously with the spatial dimension, d, and the dissipation coefficient, epsilon. Although the velocity distribution follows a scaling form, its moments exhibit multiscaling asymptotic behavior. Furthermore, the velocity autocorrelation function decays algebraically with time, A(t)= ~ t^{-alpha}, with a non-universal dissipation-dependent exponent alpha=1/epsilon. In the forced case, the steady state Fourier transform is obtained via a cumulant expansion. Even in this case, velocity correlations develop and the velocity distribution is non-Maxwellian.Comment: 10 pages, 3 figure
    • 

    corecore