1,141 research outputs found

    750 GeV diphoton resonance and electric dipole moments

    Get PDF
    We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric dipole moment can be comparable to the present experimental bound if the CP-violating angle {\alpha} in the underlying new physics is of O(10^{-1}). An electron EDM comparable to the present bound can be achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-violating angle {\alpha} for an approximately scalar resonance, is of O(10^{-3}). For the case that the 750 GeV resonance corresponds to a composite pseudo-Nambu-Goldstone boson formed by a QCD-like hypercolor dynamics confining at \Lambda_HC, the resulting neutron EDM can be estimated with \alpha ~ (750 GeV / \Lambda_HC)^2\theta_HC, where \theta_HC is the hypercolor vacuum angle.Comment: 21 pages, 5 figure

    Reliability Analysis on Flexural Behavior of FRP Bridge Decks

    Get PDF
    Design codes for the design of FRP bridge decks shall be established to promote the use of such innovative materials. For the purpose of preparing code provisions, reliability analyses were conducted to evaluate proper levels of safety and serviceability. Based on the results, several guidelines on design codes are suggested

    Improvement of Wood CT Images by Consideration of the Skewing of Ultrasound Caused by Growth Ring Angle

    Get PDF
    For the purpose of removing distortions in ultrasonic computerized tomographic (CT) images of wood, this study proposes a technique for taking into account the skewing effect in reconstructing the image. First, it was experimentally confirmed that an ultrasonic wave is refracted because of the anisotropic characteristics of wood. Transmission paths of an ultrasonic wave through a cross-section of wood were predicted by considering the change in wave velocity based on the annual ring angle and the presence of juvenile wood. Then, the methodology of the application of the predicted paths to CT image reconstruction was proposed and verified. The accuracy of defect detection in wood was significantly improved by the proposed technique

    Computer use at work is associated with self-reported depressive and anxiety disorder

    Get PDF
    Adjusted OR* of DAD considering the combined effect of computer use and occupational group, education, and job status. (DOC 61 kb

    Oxygen Partial Pressure during Pulsed Laser Deposition: Deterministic Role on Thermodynamic Stability of Atomic Termination Sequence at SrRuO3/BaTiO3 Interface

    Full text link
    With recent trends on miniaturizing oxide-based devices, the need for atomic-scale control of surface/interface structures by pulsed laser deposition (PLD) has increased. In particular, realizing uniform atomic termination at the surface/interface is highly desirable. However, a lack of understanding on the surface formation mechanism in PLD has limited a deliberate control of surface/interface atomic stacking sequences. Here, taking the prototypical SrRuO3/BaTiO3/SrRuO3 (SRO/BTO/SRO) heterostructure as a model system, we investigated the formation of different interfacial termination sequences (BaO-RuO2 or TiO2-SrO) with oxygen partial pressure (PO2) during PLD. We found that a uniform SrO-TiO2 termination sequence at the SRO/BTO interface can be achieved by lowering the PO2 to 5 mTorr, regardless of the total background gas pressure (Ptotal), growth mode, or growth rate. Our results indicate that the thermodynamic stability of the BTO surface at the low-energy kinetics stage of PLD can play an important role in surface/interface termination formation. This work paves the way for realizing termination engineering in functional oxide heterostructures.Comment: 27 pages, 6 figures, Supporting Informatio

    Moisture Content Prediction Below and Above Fiber Saturation Point by Partial Least Squares Regression Analysis on Near Infrared Absorption Spectra of Korean Pine

    Get PDF
    This study was performed to predict the surface moisture content of Korean pine (Pinus koraiensis) with low moisture content (approximately 0%) and high moisture content above the FSP using near IR spectroscopy. Near IR absorbance spectra of circular specimens were acquired at various moisture contents at 25°C. To enhance the precision of the regression model, mathematical preprocessing was performed by determining the three-point moving average and Norris second derivatives. After preprocessing, partial least squares regression was carried out to establish the surface moisture content prediction model. We divided the specimens into two groups based on their moisture contents. For the first group, which possessed moisture contents less than 30%, the R2 values and root mean squared error of prediction (RMSEP) of the model were 0.96 and 1.48, respectively. For the second group, which possessed moisture contents greater than 30%, the R2 values and RMSEP of the model were 0.94 and 4.88, respectively. For all moisture contents, the R2 and RMSEP were 0.96 and 5.15, respectively. As the range of moisture contents included in the prediction model was expanded, the error of the model increased. In addition, the peak positions of the water absorption band (1440 and 1930 nm) shifted to longer wavelengths at higher moisture contents
    • …
    corecore