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We examine the implication of the recently observed 750 GeV diphoton excess for the electric dipole 
moments of the neutron and electron. If the excess is due to a spin zero resonance which couples to 
photons and gluons through the loops of massive vector-like fermions, the resulting neutron electric 
dipole moment can be comparable to the present experimental bound if the CP-violating angle α in 
the underlying new physics is of O(10−1). An electron EDM comparable to the present bound can be 
achieved through a mixing between the 750 GeV resonance and the Standard Model Higgs boson, if 
the mixing angle itself for an approximately pseudoscalar resonance, or the mixing angle times the CP-
violating angle α for an approximately scalar resonance, is of O(10−3). For the case that the 750 GeV 
resonance corresponds to a composite pseudo-Nambu–Goldstone boson formed by a QCD-like hypercolor 
dynamics confining at �HC, the resulting neutron EDM can be estimated with α ∼ (750 GeV/�HC)2θHC, 
where θHC is the hypercolor vacuum angle.

© 2016 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recently the ATLAS and CMS collaborations reported an excess 
of diphoton events at the invariant mass mγ γ � 750 GeV with the 
local significance 3.6 σ and 2.6 σ , respectively [1,2]. The anal-
ysis was updated later, yielding an increased local significance, 
3.9 σ and 3.4 σ , respectively [3,4]. If the signal persists, this will 
be an unforeseen discovery of new physics beyond the Standard 
Model (SM). So one can ask now what would be the possible 
phenomenology other than the diphoton excess, which may result 
from the new physics to explain the 750 GeV diphoton excess.

With the presently available data, one simple scenario to ex-
plain the diphoton excess is a SM-singlet spin zero resonance S
which couples to massive vector-like fermions carrying non-zero 
SM gauge charges [5–8]. In this scenario, the 750 GeV resonance 
interacts with the SM sector dominantly through the SM gauge 
fields and possibly also through the Higgs boson. In such case, if 
the new physics sector involves a CP-violating interaction, the elec-
tric dipole moment (EDM) of the neutron or electron may provide 
the most sensitive probe of new physics in the low energy limit.
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More explicitly, after integrating out the massive vector-like 
fermions, the effective lagrangian may include

κs

2
S F aμν F a

μν + κp

2
S F aμν F̃ a

μν + dW

3
fabc F a

μρ F b ρ
ν F̃ cμν + ..., (1)

where F a
μν denotes the SM gauge field strength and F̃ a

μν =
1
2 εμνρσ F aμν is its dual. In view of that the SM weak interac-
tions break CP explicitly through the complex Yukawa couplings,1

it is quite plausible that the underlying dynamics of S generically 
breaks CP, which would result in nonzero value of the effective 
couplings κsκp/

√
κ2

s + κ2
p and dW . As is well known, in the pres-

ence of those CP violating couplings, a nonzero neutron or electron 
EDM can be induced through the loops involving the SM gauge 
fields [10–13].

In this paper, we examine the neutron and electron EDM in 
models for the 750 GeV resonance, in which the effective in-
teractions (1) are generated by the loops of massive vector-like 
fermions.2 We find that for the parameter region to give the 

1 Throughout this paper, we assume the CP invariance in the strong interaction is 
due to the QCD axion associated with a Peccei–Quinn U (1) symmetry [9].

2 A similar study was carried out right after the discovery of the Higgs boson, 
considering CP-odd couplings of the Higgs boson [14,15].
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diphoton cross section σ(pp → γ γ ) = 1 ∼ 10 fb, the neutron 
EDM can be comparable to the present experimental bound, e.g. 
dn ∼ a few × 10−26 e cm, if the CP-violating angle α in the under-

lying dynamics is of O(10−1), where sin 2α ∼ κsκp/

√
κ2

s + κ2
p in 

terms of the effective couplings in (1). An electron EDM near the 
present bound can be obtained also through a mixing between S
and the SM Higgs boson H . We find that again for the parameter 
region of σ(pp → γ γ ) = 1 ∼ 10 fb, the electron EDM is given by 
de ∼ 6 × 10−26 sin ξS H sinα e cm, where ξS H is the S − H mixing 
angle.3 Our result on the neutron EDM can be applied also to the 
models in which S corresponds to a composite pseudo-Nambu–
Goldstone boson formed by a QCD-like hypercolor dynamics which 
is confining at �HC [16–19]. In this case, the CP-violating order pa-
rameter α can be identified as α ∼ θHCm2

S/�
2
HC, where θHC denotes 

the vacuum angle of the underlying QCD-like hypercolor dynamics.
The organization of this paper is as follows. In section 2, we 

introduce a simple model for the 750 GeV resonance involving 
CP violating interactions, and summarize the diphoton signal rate 
given by the model. In section 3, we examine the neutron and 
electron EDM in the model of section 2, and discuss the connection 
between the resulting EDMs and the diphoton signal rate. Although 
we are focusing on a specific model, our results can be used for an 
estimation of EDMs in more generic models for the 750 GeV res-
onance. In section 4, we apply our result to the case that S is a 
composite pseudo-Nambu–Goldstone boson formed by a QCD-like 
hypercolor dynamics. Section 5 is the conclusion.

2. A model for diphoton excess with CP violation

The 750 GeV diphoton excess can be explained most straight-
forwardly by introducing a SM-singlet spin zero resonance S which 
couples to massive vector-like fermions to generate the effective 
interactions (1) [7]. To be specific, here we consider a simple 
model involving N F Dirac fermions � = (�1, �2, ..., �N F ) carrying 
a common charge under the SM gauge group SU (3)c × SU (2)L ×
U (1)Y . Then the most general renormalizable interactions of S and 
� include

L = �̄ i/D� − �̄
(

M + Ys S + iY p Sγ 5
)

�

− 1

2
m2

S S2 − A S H S|H|2 + ...,

(2)

where the mass matrix M can be chosen to be real and diagonal, 
while Ys,p are hermitian Yukawa coupling matrices. Here H is the 
SM Higgs doublet, and we have chosen the field basis for which 
S has a vanishing vacuum expectation value in the limit to ignore 
its mixing with H . For simplicity, in the following we assume that 
all fermion masses and the Yukawa couplings are approximately 
flavor-universal, so they can be parametrized as

M ≈ m� 1N F ×N F , Ys ≈ yS cosα 1N F ×N F ,

Y p ≈ yS sinα 1N F ×N F ,
(3)

where 1N F ×N F denotes the N F × N F unit matrix. Note that in this 
parametrization sin 2α corresponds to the order parameter for CP 
violation. In the following, we will often use α (or sinα) as a CP 
violating order parameter, although it should be α−π/2 (or cosα) 
for an approximately pseudoscalar S .

Under the above assumption on the model parameters, one can 
compute the 1PI amplitudes for the production and decay of S at 
the LHC, yielding [7]

3 Note that if ξS H corresponds to a CP-violating mixing angle, then sinα in this 
expression is not a CP-violating parameter anymore, and therefore is a parameter of 
order unity.
L1PI = g2
3

16π2mS
S
(

c(s)
3 Ga

μνGaμν + c(p)
3 Ga

μν G̃aμν
)

+ g2
2

16π2mS
S
(

c(s)
2 W a

μν W aμν + c(p)
2 W a

μν W̃ aμν
)

+ g2
1

16π2mS
S
(

c(s)
1 Bμν Bμν + c(p)

1 Bμν B̃μν
)

,

(4)

where

c(s)
i = N F yS cosα Tr(T 2

i (�))
mS

m�

A1/2(τ�)

2
,

c(p)

i = −N F yS sinα Tr(T 2
i (�))

mS

m�

f (τ�)

τ�

,

(5)

with i = 1, 2, 3 denoting the SM gauge groups U (1)Y , SU (2)L , 
SU (3)c , respectively, and τ� ≡ m2

S/4m2
� . The loop functions

A1/2(τ ) and f (τ ) are given by

A1/2(τ ) = 2
[
τ + (τ − 1) f (τ )]/τ 2,

f (τ ) = −1

2

1∫
0

dx
1

x
ln[1 − 4x(1 − x)τ ]

=

⎧⎪⎨⎪⎩
(arcsin

√
τ )2, τ ≤ 1

− 1
4

[
ln

(
1+

√
1−τ−1

1−
√

1−τ−1

)
− iπ

]2

, τ > 1.
(6)

Note that with a nonzero value of the CP violating angle α, the 
750 GeV resonance S couples to both F a

μν F aμν and F a
μν F̃ aμν . 

These two couplings turn out to incoherently contribute to the de-
cay rate of S , so that the relevant decay rates are given by

�γγ = 1

4π

(
e2

16π2

)2

mS

(∣∣∣c(s)
γ

∣∣∣2 +
∣∣∣c(p)

γ

∣∣∣2
)

, (7)

�gg = 8

4π

(
g2

3

16π2

)2

mS

(∣∣∣c(s)
g

∣∣∣2 +
∣∣∣c(p)

g

∣∣∣2
)

, (8)

in the rest frame of S . The diphoton signal cross section at the 
LHC can be estimated using the narrow width approximation [7], 
yielding

σ(pp → S → γ γ ) = C gg
1

s

mS

�S

�γγ

mS

�gg

mS
, (9)

where the coefficient C gg = 2137 at 
√

s = 13 TeV, and �S denotes 
the total decay width of S . Manipulating this, the decay rate should 
satisfy the following relation,

�γγ

mS

�gg

mS
= 2.17 × 10−9

(
�S

1 GeV

)(σsignal

8 fb

)
, (10)

for the signal cross section σsignal ≡ σ(pp → γ γ ) = 1 ∼ 10 fb. Here 
we normalize the total decay rate of S by �S = 1 GeV, since it is 
a typical value when there is an appreciable mixing between the 
singlet scalar S and the SM Higgs doublet [20].

Plugging (5) and (7), (8) into (10), we obtain a relation which 
is useful for an estimation of the electric dipole moments over the 
diphoton signal region:

m�

yS
= 96 GeV × Q � N F

(
2

3
Tr(T 2

3 (�))Tr(1(�))

)1/2

×
(

1 GeV

�

)1/4 (
8 fb

σ

)1/4

R�,

(11)
S signal
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where

R�(α,τ� = m2
S/4m2

�)

=
(

c2
α(A1/2(τ�)/2)2 + s2

α( f (τ�)/τ�)2

c2
0.1(A1/2(1/4)/2)2 + s2

0.1(4 f (1/4))2

)1/2

= O(1).

Here Q � and T3(�) denote the electromagnetic and color charge 
of � , respectively, Tr(1(�)) is the dimension of the gauge group 
representation of � , and sα = sinα and cα = cosα. Note that R�

represents the dependence on τ� = m2
S/4m2

� and α, which is nor-
malized to the value at τ� = 1/4 and α = 0.1. As R� has a mild 
dependence on τ� and α, the range of the parameter ratio m�/yS
which would explain the diphoton excess can be easily read off 
from the above relation.

To see the origin of the CP violating angle α, one may consider 
a UV completion of the model (2). In regard to this, an attractive 
possibility is that the model is embedded at some higher scales 
into a supersymmetric model including a singlet superfield φ and 
N F flavors of vector-like charged matter superfields ψ +ψc [21,22]. 
The most general renormalizable superpotential of φ and ψ + ψc

is given by

W = (M + Y φ)ψψc + 1

2
μφφ2 + 1

3
κφ3, (12)

where without loss of generality M can be chosen to be real and 
diagonal, det(Y ) to be real, and φ to have a vanishing vacuum 
value in the limit to ignore the mixing with the Higgs doublets. 
Again, for simplicity let us assume that the mass matrix M and 
the Yukawa coupling matrix Y are approximately flavor-universal, 
and therefore

M ≈ m�1N F ×N F , Y ≈ yS 1N F ×N F . (13)

Including the soft supersymmetry (SUSY) breaking terms, the 
scalar mass term of φ is given by(
|μφ |2 + m2

φ

)
|φ|2 + 1

2

(
Bφμφφ2 + h.c.

)
, (14)

where mφ is a SUSY breaking soft scalar mass, while B is a holo-
morphic bilinear soft parameter. Note that in our prescription, both 
μφ and Bφ are complex in general.

Without relying on any fine tuning other than the minimal 
one to keep the SM Higgs to be light, one can arrange the SUSY 
model parameters to identify the lighter mass eigenstate of φ as 
the 750 GeV resonance S , and the fermion components of ψ + ψc

as the Dirac fermion � to generate the effective interactions (4), 
while keeping all other SUSY particles heavy enough to be in 
multi-TeV scales. Then our model (2) arises as a low energy effec-
tive theory at scales around TeV from the SUSY model (12), with 
the matching condition

1√
2

S = Re(φ) cosα + Im(φ) sinα,

where

tan 2α = Im(Bφμφ)

Re(Bφμφ)
. (15)

Another possibility, which is completely different but equally 
interesting, would be that S corresponds to a pseudo-Nambu–
Goldstone boson formed by a QCD-like hypercolor dynamics which 
confines at scales near TeV. As we will see in section 4, the CP vi-
olating order parameter α in such models can be identified as

sin 2α ∼ m2
S

�2
sin θHC, (16)
HC
Fig. 1. The Weinberg’s three gluon interaction generated as a two-loop threshold 
correction. Here the small dark square represents the γ5-coupling of S to the vector-
like fermion � .

where �HC is the scale of spontaneous chiral symmetry breaking 
by the hypercolor dynamics and θHC is the hypercolor vacuum an-
gle.

3. Electric dipole moments

In this section, we estimate the electric dipole moments (EDMs) 
induced by the 750 GeV sector in terms of the model introduced in 
the previous section. At energy scales below m� and mS , the heavy 
fermions � and the singlet scalar S can be integrated out, while 
leaving their footprints in the effective interactions among the SM 
gauge bosons and Higgs boson. Then those effective interactions 
eventually generate the nucleon and electron EDMs in the low en-
ergy limit through the loops involving the exchange of the SM 
gauge bosons and/or the Higgs boson. In this process, one needs to 
take into account the renormalization group (RG) running, partic-
ularly those due to the QCD interactions, from the initial threshold 
scale m� ∼ mS down to the hadronic scale �QCD, as well as the in-
termediate threshold corrections from integrating out the massive 
SM particles.

To simplify the calculation, we will ignore the RG running ef-
fects due to the QCD interactions over the scales from m� to the 
SM Higgs boson mass mH = 125 GeV. In this approximation, the 
Wilsonian effective interactions at scales just below mH can be de-
termined by the leading order Feynman diagrams involving �, S
and the SM Higgs boson. We then take into account the subse-
quent RG running due to the QCD interactions from mH to �QCD, 
while ignoring the threshold corrections due to the SM heavy 
quarks, to derive the low energy effective lagrangian at scales just 
above �QCD.

3.1. Neutron EDM

The leading contribution to the neutron EDM turns out to come 
from the Weinberg’s three gluon operator [10] generated by the 
diagram in Fig. 1. In the presence of a mixing between the singlet 
scalar S and the SM Higgs boson H , the EDM and chromo EDM 
(CEDM) of light quarks are induced by the Barr–Zee diagrams [11]
in Fig. 2, which may provide a potentially important contribution 
to the neutron EDM.

To be concrete, let us take a simple model having N F vector-like 
Dirac fermions � transforming under SU (3)c × SU (2)L × U (1)Y as

� = (3,1)Y� , (17)

where Y� denotes the U (1)Y hypercharge of � . As mentioned 
above, we take an approximation to ignore the RG running due 
to the QCD interactions between m� and mH = 125 GeV. Then at 
scales just below mH , the relevant Wilsonian effective interactions 
are determined to be [10,23–26],
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Fig. 2. The Barr–Zee diagrams for the EDM and chromo EDM (CEDM) of light fermions. The small cross denotes the S − H mixing.
Leff(mH )

= −dW (mH )

6
fabcε

μνρσ Ga
ρσ Gb

μλGc λ
ν

− i

2

∑
q

[
dq(mH )eq̄σμνγ5qFμν

+ d̃q(mH )g3q̄σμνγ5T a
3qGaμν

]
, (18)

with

dq(mH ) = 4N F
e2

(4π)4

mq

v

(
6Y 2

�

yS

m�

sαsξ cξ

)
×

[
Q q +

(
t2

w Q q − T 3
qL

2c2
w

)][
g

(
m2

�

m2
H

)
− g

(
m2

�

m2
S

)]
,

d̃q(mH ) = 4N F
g2

3

(4π)4

mq

v

(
yS

m�

sαsξ cξ

)
×

[
g

(
m2

�

m2
H

)
− g

(
m2

�

m2
S

)]
,

dW (mH ) = −N F
g3

3

(4π)4

y2
S

m2
�

cαsα

[
s2
ξ h

(
m2

�

m2
H

)
+ c2

ξ h

(
m2

�

m2
S

)]
,

(19)

where q = u, d, s stands for the light quark species, sα = sinα, sξ =
sin ξS H for the S − H mixing angle ξS H , v = 246 GeV is the SM 
Higgs vacuum value, cw = cos θw , tw = tan θw for the weak mixing 
angle θw , and the loop functions g and h are given by4

g(z) ≡ z

2

1∫
0

dx
1

x(1 − x) − z
ln

x(1 − x)

z
,

h(z) ≡ z2

1∫
0

dx

1∫
0

dy
x3 y3(1 − x)

[zx(1 − xy) + (1 − x)(1 − y)]2
. (20)

Let us recall that the parameter ratio m�/yS has a specific connec-
tion with the diphoton cross section σ(pp → γ γ ), which is given 
by (11). This allows us to estimate the expected size of the EDMs 
in terms of a few model parameters such as α and ξS H .

In order to estimate the resulting neutron EDM, we should 
bring the effective interactions (18) down to the QCD scale through 
the RG evolution. For this, it is convenient to redefine the coeffi-
cients as

C1(μ) = dq(μ)

mq Q q
, C2(μ) = d̃q(μ)

mq
, C3(μ) = dW (μ)

g3
, (21)

4 It is useful to note the asymptotic behavior of the loop functions: h(z 
 1) �
z ln(1/z), h(z � 1) � 1/4, and g(z � 1) � 1 + (ln z)/2.
which are satisfying the RG equation [27,28]:

μ
∂C

∂μ
= g2

3

16π2
γ C, (22)

with the anomalous dimension matrix

γ ≡
⎛⎝γe γeq 0

0 γq γGq

0 0 γG

⎞⎠
=

⎛⎝8C F 8C F 0
0 16C F − 4Nc 2Nc

0 0 Nc + 2n f + β0

⎞⎠ , (23)

where C = (C1, C2, C3)
T , Nc = 3 is the number of color, C F = 4/3

is a quadratic Casimir, n f is the number of active light quarks, and 
β0 = (33 −2n f )/3 is the one-loop beta function coefficient. Solving 
this RG equations, one finds [27]

C1(μ) = ηκe C1(mH ) + γqe

γe − γq
(ηκe − ηκq )C2(mH )

+
[

γGqγqeη
κe

(γq − γe)(γG − γe)
+ γGqγqeη

κq

(γe − γq)(γG − γq)

+ γGqγqeη
κG

(γe − γG)(γq − γG)

]
C3(mH ),

C2(μ) = ηκq C2(mH ) + γGq

γq − γG

[
ηκq − ηκG

]
C3(mH ),

C3(μ) = ηκG C3(mH ), (24)

where η ≡ g2
3(mH )/g2

3(μ) and κx = γx/(2β0). The analytic expres-
sions for Ci(μ ∼ �QCD) in terms of Ci(mH ) are complicated ex-
cept C3, however fortunately it turns out that the dominant contri-
bution to the neutron EDM comes from C3(μ ∼ �QCD). From (24), 
we obtain

dW (μ) =
(

g3(mc)

g3(μ)

)(
g3(mb)

g3(mc)

) 33
25

(
g3(mH )

g3(mb)

) 39
23

dW (mH ). (25)

It can be shown numerically that dq(μ) and d̃q(μ) also get a sim-
ilar amount of suppression by the RG evolution compared to the 
high scale values at mH .

Now one can relate the Wilsonian coefficients dW (μ), dq(μ)

and d̃q(μ) at μ ∼ �QCD to the neutron EDM:

− i

2
dnn̄σμνγ5nFμν, (26)

which is the most ambiguous step. For this, one can take two ap-
proaches, the Naive Dimensional Analysis (NDA) [29] or the QCD 
sum rule [30–32], essentially yielding similar results. As for the 
neutron EDM estimated by the NDA, one finds

dn/e = O(dq(μ)) +O(d̃q(μ)/
√

6) +O( fπdW (μ)), (27)
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where the corresponding scale μ is chosen to be the one with 
g3(μ) � 4π/

√
6 [10]. On the other hand, applying the QCD sum 

rule for the neutron EDM dq
n from the (C)EDM of light quarks, one 

finds a more concrete result5 [32]:

dq
n/e � −0.2du(μ) + 0.78dd(μ) + 0.29d̃u(μ) + 0.59d̃d(μ), (28)

for μ = 1 GeV. As for the neutron EDM dW
n from the Weinberg’s 

three gluon operator in the QCD sum rule approach, one similarly 
finds [33]

|dW
n /e| =

(
1.0+1.0

−0.5

)
× 20 MeV × |dW (μ)| (29)

for μ = 1 GeV. We can now make a comparison between the neu-
tron EDM dW

n originating from dW (μ) and the other part dq
n origi-

nating from dq(μ) and d̃q(μ). Within the QCD sum rule approach, 
we find numerically

dq
n/dW

n � 3 sin ξS H + 0.07. (30)

This implies that the neutron EDM is dominated by the contri-
bution from the Weinberg’s three gluon operator for the S − H
mixing angle ξS H � 0.1, which might be required to be consistent 
with the Higgs precision data [20,34,35].6

With the above observation, plugging (11), (19) and (25)
into (29), we obtain the following expression for the expected neu-
tron EDM over the 750 GeV signal region:

dn/e � 3 × 10−25 cm × cαsα
N F Y 2

�

√(
�S

1 GeV

)(σsignal

8 fb

)
× Rn, (31)

where

Rn =
(

h(4τ�)

h(1)

)[
c2

0.1(A1/2(1/4)/2)2 + s2
0.1(4 f (1/4))2

c2
α(A1/2(τ�)/2)2 + s2

α( f (τ�)/τ�)2

]1/2

= O(1).

Here Rn represents the dependence on the loop functions A1/2, 
f and h defined in (6) and (20), which is normalized to the value 
at τ� = m2

S/4m2
� = 1/4 and α = 0.1. With this result, one can 

easily see that the neutron EDM from the 750 GeV sector satu-
rates the current experimental upper bound ∼ 3 × 10−26 e cm [37]
for the parameter region with sin 2α/N F Y 2

� ∼ 0.1. In addition, we 
note that despite of theoretical uncertainties, a recent experimen-
tal bound on mercury EDM could give a factor two stronger bound 
on the neutron EDM, |dn| < 1.6 × 10−26 e cm [38], leading to a fac-
tor two stronger constraint on sin 2α/N F Y 2

� . In Fig. 3, we depict 
the resulting neutron EDM as a function of CP violating angle α
for the model parameters which give the diphoton cross section 
σ(pp → γ γ )) = 1 ∼ 10 fb. The gray region above the solid line is 
excluded by [37], while the light gray region above the dashed line 
is excluded by Hg EDM [38].

3.2. Electron EDM

In the presence of the S − H mixing, a sizable electron EDM 
can arise from the Barr–Zee diagram in Fig. 2. In case of the 

5 We are using “the modified QCD sum rule” obtained by assuming the Peccei–
Quinn mechanism to dynamically cancel the QCD vacuum angle.

6 If one uses the NDA rule or the chiral perturbation theory [36], the resulting 
neutron EDM induced by the (C)EDM of the strange quark can be comparable to 
the contribution from the Weinberg’s three gluon operator for the S − H mixing 
angle ξS H ∼ 0.1.
Fig. 3. The neutron electric dipole moment as a function of the CP violating angle 
α for the model parameters to give σsignal = 1–10 fb. For this plot, we choose the 
total decay width of S as �S = 1 GeV, the number of Dirac fermions � as N F = 1, 
the mass and U (1)Y hypercharge of � as m� = 750 GeV and Y� = 1. (For inter-
pretation of the references to color in this figure, the reader is referred to the web 
version of this article.)

model with N F flavors of � = (3, 1)Y� , we obtain the electron 
EDM

− ie

2
de(μ)ēσμνγ5eFμν, (32)

with the coefficient [25,26]

de = −24N F
e2

(4π)4

me

v

(
Y 2

�

yS

m�

sαsξ cξ

)(
1 + t2

w − 1

4c2
w

)
×

[
g

(
m2

�

m2
H

)
− g

(
m2

�

m2
S

)]
, (33)

where the loop function g(z) is given in (20) and the other param-
eters are defined as same as in (19). Applying the relation (11) for 
the above result, we find

de = [−5.9 × 10−26 cm]

× sαsξ cξ Y�

(
�S

1 GeV

)1/4 (σsignal

8 fb

)1/4 × Re,
(34)

where

Re =
(

g(m2
S/4τ�m2

H ) − g(1/4τ�)

g(m2
S/m2

H ) − g(1)

)

×
(

c2
0.1(A1/2(1/4)/2)2 + s2

0.1(4 f (1/4))2

c2
α(A1/2(τ�)/2)2 + s2

α( f (τ�)/τ�)2

)1/2

= O(1)

for τ� = m2
S/4m2

� . The above result shows the electron EDM asso-
ciated with the S − H mixing can saturate the current experimental 
upper limit 8.7 × 10−29 cm [39] when sinα sin ξS H = O(10−3). In 
Fig. 4, we depict the electron EDM over the 750 GeV signal region 
for the two different values of the S − H mixing angle: ξS H = 10−1

and 10−2.
The electron EDM is sensitive to sinα sin ξH S . On the other 

hand, the neutron EDM is sensitive to the sin 2α. This allows us 
to derive combined constraints on the two angle parameters α and 
ξH S . In Fig. 5, we present the bounds on (α, ξH S ) from the electron 
and neutron EDMs.

If the vector-like fermions � carry a nonzero SU (2)L charge, 
there can be a nonzero electron EDM even in the limit ξS H = 0. For 
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Fig. 4. The electron electric dipole moment for the minimal model with � =
(3, 1)Y�

, m� = 750 GeV, ξS H = (10−1, 10−2), Y� = 1, �S = 1 GeV, and σsignal =
1–10 fb.

Fig. 5. Constraints on the angle parameters (α, ξH S ) from EDMs. The green dot-
dashed line represents the neutron EDM, while the blue dashed line is the elec-
tron EDM. Here we use �S = 1 GeV, σsignal = 8 fb, m� = 750 GeV, Y� = 1. The 
blue shaded region is excluded by the current experimental result on the electron 
EDM [39], while the green shaded region is excluded by the current experimental 
results on the neutron EDM [37,38]. The red shaded region is excluded by the Higgs 
boson properties measured by the Large Hadron Collider [20,34,35]. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

instance, in the model with N F flavors of � = (3, 2)Y� , a CP-odd 
three W -boson operator of the form

d̃W

3
εi jk W i

μρ W j ρ
ν W̃ kμν

can be generated by the loops of � . Following [12,13],7 we find 
the resulting electron EDM is given by

7 The authors in [13] noticed that the result is scheme-dependent. This means 
that the precise result depends on the dependence of d̃W on the external W -boson 
�de � − N F

4

g4
2

(16π2)3
me

y2
S

m2
�

cαsα

[
s2
ξ h

(
m2

H

m2
�

)
+ c2

ξ h

(
m2

S

m2
�

)]

� [−6.5 × 10−31 cm] × cαsα
N F Q 2

�

√(
�S

1 GeV

)(σsignal

8 fb

)
× R̃e,

(35)

where

R̃e =
(

c2
ξ h(4τ�) + s2

ξ h(m2
H/m2

�)

c2
0.1h(1) + s2

0.1h(m2
H/m2

S)

)

×
(

c2
0.1(A1/2(1/4)/2)2 + s2

0.1(4 f (1/4))2

c2
α(A1/2(τ�)/2)2 + s2

α( f (τ�)/τ�)2

)1/2

= O(1).

For sin 2α � 0.1, which might be required to satisfy the bound on 
the neutron EDM, the resulting electron EDM is about three orders 
of magnitude smaller than the current bound, therefore too small 
to be observable in a foreseeable future.

4. Composite pseudo-Nambu–Goldstone resonance

In the previous section, we discussed the neutron and elec-
tron EDM in models where the 750 GeV resonance is identified 
as an elementary spin zero field (at least at scales around TeV) 
which couples to vector-like fermions to generate the effective 
couplings to explain the diphoton excess σ(pp → γ γ ) ∼ 5 fb. On 
the other hand, it has been pointed out that in most cases this 
scheme confronts with a strong coupling regime at scales not 
far above the TeV scale [40–42]. In regard to this, an interesting 
possibility is that S corresponds to a composite pseudo-Nambu–
Goldstone (PNG) boson of the spontaneously broken chiral sym-
metry of a new QCD-like hypercolor dynamics which confines at 
�HC =O(1) TeV [16–18]. As is well known, such models involve a 
unique source of CP violation, the hypercolor vacuum angle θHC,8

which can yield a nonzero neutron or electron EDM in the low 
energy limit [16].

To proceed, we consider a specific example, the model dis-
cussed in [17], involving a hypercolor gauge group SU (N)HC with 
charged Dirac fermions (ψ, χ) which transform under SU (N)HC ×
SU (3)c × SU (2)L × U (1)Y as

ψ = (N,3,1)Yψ , χ = (N,1,1)Yχ , (36)

where Yψ,χ denote the U (1)Y hypercharge. At scales above �HC , 
the lagrangian of the hypercolor color sector is given by

LHC = − 1

4g2
HC

Haμν Ha
μν − θHC

32π2
Haμν H̃a

μν

+ ψ̄ i/Dψ + χ̄ i/Dχ − ψ̄mψψ − χ̄mχχ, (37)

where Haμν denotes the SU (N)HC gauge field strength, H̃aμν is 
its dual, and the fermion masses mψ,χ are chosen to be real and 
γ5-free. For a discussion of the low energy consequence of the 
CP-violating vacuum angle θHC, it is convenient to make a chiral 
rotation of fermion fields to rotate away θHC into the phase of the 
fermion mass matrix, which results in

M = Mθ

≡ diag
(

mψeixψθHC ,mψeixψθHC ,mψeixψθHC ,mχ eixχ θHC
)

, (38)

momenta. Here we simply use the result from the dimensional regularization for 
the purpose of estimation of the electron EDM.

8 A phenomenological study of the hypercolor vacuum angle on diphoton excess 
has been carried out in Ref. [43].
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where

3xψ + xχ = 1.

For mψ,χ 
 �HC, the model is invariant under an approximate 
chiral symmetry SU (4)L × SU (4)R which is spontaneously broken 
down to the diagonal SU (4)V by the fermion bilinear condensates:

|〈ψ̄LψR〉| � |〈χ̄LχR〉| � N

16π2
�3

HC. (39)

The corresponding pseudo-Nambu–Goldstone (PNG) boson can be 
described by an SU (4)-valued field U = exp(2i�/ f ) whose low 
energy dynamics is governed by

Leff = 1

4
f 2 tr

(
DμU DμU †

)
+ μ3 tr

(
Mθ U † + h.c.

)
+LWZW +LCPV..., (40)

where the naive dimensional analysis suggests

f 2 � N

16π2
�2

H , μ3 � N

16π2
�3

H , (41)

and LWZW and LCPV denote the Wess–Zumino–Witten term and 
the additional CP-violating term, respectively. For a discussion of 
CP violation due to θHC �= 0, it is convenient to choose the fermion 
mass matrix Mθ as

− i

2

(
Mθ − M†

θ

)
= mθ 14×4, (42)

for which the PNG boson has a vanishing vacuum expectation 
value. Then the CP violation due to θHC �= 0 is parametrized simply 
by

mθ ≡ mψ sin
(
xψθHC

) = mχ sin
(
xχθHC

) (
3xψ + xχ = 1

)
, (43)

which manifestly shows that CP is restored if θHC or any of mψ,χ

is vanishing. In the limit |θHC| 
 1, this order parameter for CP 
violation has a simple expression:

mθ � θHC

tr
(

M−1
θ̄H =0

) = mψmχ

3mχ + mψ

θHC. (44)

The PNG bosons of SU (4)L × SU (4)R/SU (4)V include a unique 
SM-singlet component S which can be identified as the 750 GeV 
resonance:

� = 1

2
√

6
diag(S, S, S,−3S) + · · · , (45)

where U = exp(2i�/ f ), and the ellipsis denotes the SU (3)c octet 
and triplet PNG bosons which are heavier than S . Then the Wess–
Zumino–Witten term gives rise to the following effective couplings 
between S and the SM gauge bosons, which would explain the 
diphoton excess:

LWZW = − N

16π2

S

f

(
1

2
√

6
g2

3Gaμν G̃a
μν

+
√

6

2
g1

2
(

Y 2
ψ − Y 2

χ

)
Bμν B̃μν

)
+ · · · . (46)

With mθ �= 0, according to the NDA, the underlying hypercolor dy-
namics generates the following CP violating effective interactions 
renormalized at �HC:

LCPV = N

16π2

mθ

�H

S

f

×
(

cG g2Gaμν Ga + cB g′2 (
Y 2 − Y 2

)
Bμν Bμν

)

3 μν ψ χ
Fig. 6. The expected neutron electric dipole moment as a function of the hyper-
color vacuum angle θHC in models for a composite PNG 750 GeV resonance. For the 
analysis, we assume mψ = mχ , and a mixing between PNG boson S and the Higgs 
boson which allow us to take �S = 1 GeV as a benchmark value. We also choose 
N = 3, Yψ = 1/3 and Yχ = 1.

+ N

16π2

mθ

�H

κG

�2
H

g3
3 fabc

3
Ga

μρ Gb ρ
ν G̃c μν + · · · , (47)

where cG , cB and κG are all of order unity.
It is now straightforward to use our previous results to find the 

nucleon and electron EDM induced by the above effective inter-
actions. By matching the coefficients of the relevant interactions 
with the simple model presented in section 2, we find the follow-
ing correspondence:

yS

m�

∼ N

2 f
, sin 2α ∼ m2

S

�2
HC

sin θHC, (48)

where we have used the relation

m2
S = (750 GeV)2 � (mψ + 3mχ )μ3

f 2
� (mψ + 3mχ )�HC. (49)

Since the ratio m�/yS should be around 100 GeV to explain the 
750 GeV diphoton excess, it turns out that f ∼ N × 50 GeV and 
�HC � 4π f /

√
N ∼ √

N TeV, implying that roughly sin 2α is a few 
factor smaller than θHC. In Fig. 6, we depict the neutron EDM in 
the minimal model for a composite PNG 750 GeV resonance for 
the parameter region to give σ(pp → γ γ ) = 1 ∼ 10 fb.

The minimal model of [17] can be generalized or modified 
to include a hypercolored fermion carrying a nonzero SU (2)L

charge [16], e.g. χ can transform as (N, 1, 2)Yχ under SU (N)H ×
SU (3)c × SU (2)L × U (1)Y . Then the hypercolor dynamic with 
nonzero θHC can generate the following CP-odd three W -boson op-
erator:

�LCPV = N

16π2

mθ

�H

κW

�2
H

g3
2εi jk

3
W i

μρ W j ρ
ν W̃ k μν, (50)

where κW = O(1) according to the NDA rule. Applying our previ-
ous result (35) under the relation (48), we find the electron EDM 
resulting from the above three W -boson operator is too small to 
be observable even when θHC =O(1).

Finally let us note that a composite PNG boson S can have 
a mixing with the SM Higgs boson if the underlying hypercolor 
model includes a higher dimensional operator of the form:

1

�
|H|2ψ̄LψR + 1

�
|H|2χ̄LχR + h.c., (51)
ψ χ
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where �ψ,χ are complex in general. For instance, this form of 
dim−5 operators can be generated by an exchange of heavy scalar 
field σ which has the couplings

Lσ = −1

2
m2

σ σ 2 + Aσ σ |H|2

+ (
λψσ ψ̄LψR + λχσ χ̄LχR + h.c.

) + ..., (52)

yielding

1

�ψ

= Aσ λψ

m2
σ

,
1

�χ
= Aσ λχ

m2
σ

.

The resulting S − H mixing angle is estimated as

ξS H ∼ v�2
HC

4πm2
S

Im(�ψ,χ )

|�ψ,χ |2 , (53)

where v = 246 GeV is the vacuum value of the SM Higgs dou-
blet H . One can apply this mixing angle for our previous result 
(34) to estimate the resulting electron EDM. Note that here S is an 
approximately pseudoscalar boson, and therefore ξS H corresponds 
to a CP-violating mixing angle, while sinα is CP-conserving and of 
order unity. One then finds the current bound on the electron EDM 
implies

�HC

|�ψ,χ |
Im(�ψ,χ )

|�ψ,χ | �O(10−2). (54)

5. Conclusion

The recently announced diphoton excess at 750 GeV in the Run 
II ATLAS and CMS data may turn out to be the first discovery of 
new physics beyond the Standard Model at collider experiments. In 
this paper, we examined the implication of the 750 GeV diphoton 
excess for the EDM of neutron and electron in models in which the 
diphoton excess is due to a spin zero resonance S which couples 
to photons and gluons through the loops of massive vector-like 
fermions. We found that a neutron EDM comparable to the cur-
rent experimental bound can be obtained if the CP violating order 
parameter sin 2α in the underlying new physics is of O(10−1). An 
electron EDM near the present bound can be obtained also when 
sin ξS H × sinα =O(10−3), where ξS H is the mixing angle between 
S and the SM Higgs boson. For the case that S corresponds to 
a pseudo-Nambu–Goldstone boson of a QCD-like hypercolor dy-
namics, one can use the correspondence sin 2α ∼ m2

S sin θHC/�2
HC

to estimate the resulting EDMs, where �HC is the scale of sponta-
neous chiral symmetry breaking by the hypercolor dynamics and 
θHC is the hypercolor vacuum angle. In view of that a nucleon or 
electron EDM near the current bound can be obtained over a natu-
ral parameter region of the model, future precision measurements 
of the nucleon or electron EDM are highly motivated.
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