2,588 research outputs found
Recommended from our members
Melanoma Plasticity Induced by Pro-Inflammatory Cytokines in Response to Immunotherapy
Melanoma dedifferentiation has been reported as a state of cellular resistance to targeted therapy and immunotherapy as cancer cells revert to a more primitive cellular phenotype. In a patient with metastatic melanoma who received adoptive T-cell transfer therapy using T cells with receptors against the melanoma antigen recognized by T cells 1 (MART-1/ Melan-A), we observed dedifferentiation as a resistance mechanism after initial response. However, biopsies obtained from responding patients during anti-programmed cell death receptor 1 (PD-1) therapy had decreased expression of melanocytic markers and increased neural crest markers. When modeling the effects in vitro, we documented that melanoma cell lines that were originally melanocytic differentiated underwent a process of neural crest dedifferentiation when continuously exposed to interferon gamma (IFNγ), through a global chromatin landscape change leading to enrichment in specific hyperaccessible chromatin regions. The IFNγ-induced dedifferentiation signature corresponded with improved outcomes in patients with melanoma, challenging the notion that neural crest dedifferentiation is an adverse phenotype
The Impacts of Hostile Events on Partisan Evaluation in East Asia
This research focuses on how foreign influence, such as threats to national security and financial crises, changes the attitudinal patterns of citizens. Specifically, this research empirically examines the effects of information on individuals’ motivated reasoning. A long-term evaluation of citizens’ attitudinal changes in East Asian countries using ordinal logistics regression and multilevel analysis reveals that attentive individuals tend to alter their partisan routine if they are concerned with the growing tension of a threat. Results also show that a party’s reputation mitigates the information effects on individual evaluation of government performance
Transient receptor potential canonical type 3 channels control the vascular contractility of mouse mesenteric arteries
Transient receptor potential canonical type 3 (TRPC3) channels are non-selective cation channels and regulate intracellular Ca2+ concentration. We examined the role of TRPC3 channels in agonist-, membrane depolarization (high K+)-, and mechanical (pressure)-induced vasoconstriction and vasorelaxation in mouse mesenteric arteries. Vasoconstriction and vasorelaxation of endothelial cells intact mesenteric arteries were measured in TRPC3 wild-type (WT) and knockout (KO) mice. Calcium concentration ([Ca2+]) was measured in isolated arteries from TRPC3 WT and KO mice as well as in the mouse endothelial cell line bEnd.3. Nitric oxide (NO) production and nitrate/nitrite concentrations were also measured in TRPC3 WT and KO mice. Phenylephrine-induced vasoconstriction was reduced in TRPC3 KO mice when compared to that of WT mice, but neither high K+- nor pressure-induced vasoconstriction was altered in TRPC3 KO mice. Acetylcholine-induced vasorelaxation was inhibited in TRPC3 KO mice and by the selective TRPC3 blocker pyrazole-3. Acetylcholine blocked the phenylephrine-induced increase in Ca2+ ratio and then relaxation in TRPC3 WT mice but had little effect on those outcomes in KO mice. Acetylcholine evoked a Ca2+ increase in endothelial cells, which was inhibited by pyrazole-3. Acetylcholine induced increased NO release in TRPC3 WT mice, but not in KO mice. Acetylcholine also increased the nitrate/nitrite concentration in TRPC3 WT mice, but not in KO mice. The present study directly demonstrated that the TRPC3 channel is involved in agonist-induced vasoconstriction and plays important role in NO-mediated vasorelaxation of intact mesenteric arteries.Fil: Yeon, Soo-In. Yonsei University College of Medicine; Corea del SurFil: Kim, Joo Young. Yonsei University College Of Medicine; . Yonsei University College of Medicine; Corea del SurFil: Yeon, Dong-Soo. Kwandong University College of Medicine; Corea del SurFil: Abramowitz, Joel. National Institute of Environmental Health Sciences; Estados UnidosFil: Birnbaumer, Lutz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. National Institute of Environmental Health Sciences; Estados UnidosFil: Muallem, Shmuel. National Institutes of Health; Estados UnidosFil: Lee, Young-Ho. Yonsei University College of Medicine; Corea del Su
In Vitro Chemosensitivity Using the Histoculture Drug Response Assay in Human Epithelial Ovarian Cancer
The choice of chemotherapeutic drugs to treat patients with epithelial ovarian cancer has not depended on individual patient characteristics. We have investigated the correlation between in vitro chemosensitivity, as determined by the histoculture drug response assay (HDRA), and clinical responses in epithelial ovarian cancer. Fresh tissue samples were obtained from 79 patients with epithelial
ovarian cancer. The sensitivity of these samples to 11 chemotherapeutic agents was tested using the HDRA method according to established methods, and we analyzed the results retrospectively. HDRA showed that they were more chemosensitive to carboplatin, topotecan and belotecan, with inhibition rates of 49.2%, 44.7%, and 39.7%, respectively, than to cisplatin, the traditional drug of choice in epithelial ovarian cancer. Among the 37 patients with FIGO stage Ⅲ/Ⅳ serous adenocarcinoma
who were receiving carboplatin combined with paclitaxel, those with carboplatin-sensitive samples on HDRA had a significantly longer median disease-free interval than patients with carboplatin-
resistant samples (23.2 vs. 13.8 months, p<0.05), but median overall survival did not differ significantly
(60.4 vs. 37.3 months, p=0.621). In conclusion, this study indicates that HDRA could provide useful information for designing individual treatment strategies in patients with epithelial ovarian cancer
Recommended from our members
Estimating the malaria transmission of Plasmodium vivax based on serodiagnosis
Background: Plasmodium vivax re-emerged in 1993 and has now become a major public health problem during the summer season in South Korea. The aim of this study was to interpret and understand the meaning of seroepidemiological studies for developing the best malaria control programme in South Korea. Methods: Blood samples were collected in Gimpo city, Paju city, Yeoncheon County, Cheorwon County and Goseong County of high risk area in South Korea. Microscopy was performed to identify patients infected with P. vivax. Antibody detection for P. vivax was performed using indirect fluorescent antibody test (IFAT). Results: A total of 1,574 blood samples was collected from participants in the study areas and evaluated against three parameters: IFAT positive rate, annual antibody positive index (AAPI), and annual parasite index (API). The IFAT positive rate was 7.24% (n = 114). Of the five study areas, Gimpo had the highest IFAT positive rate (13.68%) and AAPI (4.63). Yeongcheon had the highest API in 2005 (2.06) while Gimpo had the highest API in 2006 (5.00). No correlation was observed between any of the three parameters and study sites' distance from the demilitarized zone (DMZ). Conclusions: These results showed that P. vivax antibody levels could provide useful information about the prevalence of malaria in endemic areas. Furthermore, AAPI results for each year showed a closer relationship to API the following year than the API of the same year and thus could be helpful in predicting malaria transmission risks
Combined Fluoroscopy- and CT-Guided Transthoracic Needle Biopsy Using a C-Arm Cone-Beam CT System: Comparison with Fluoroscopy-Guided Biopsy
Abstract. We present a novel method for blind separation of instruments in polyphonic music based on a non-negative matrix factor 2-D deconvolution algorithm. Using a model which is convolutive in both time and frequency we factorize a spectrogram representation of music into components corresponding to individual instruments. Based on this factorization we separate the instruments using spectrogram masking. The proposed algorithm has applications in computational auditory scene analysis, music information retrieval, and automatic music transcription.
KIN-4/MAST kinase promotes PTEN-mediated longevity of Caenorhabditis elegans via binding through a PDZ domain
PDZ domain-containing proteins (PDZ proteins) act as scaffolds for protein-protein interactions and are crucial for a variety of signal transduction processes. However, the role of PDZ proteins in organismal lifespan and aging remains poorly understood. Here, we demonstrate that KIN-4, a PDZ domain-containing microtubule-associated serine-threonine (MAST) protein kinase, is a key longevity factor acting through binding PTEN phosphatase in Caenorhabditis elegans. Through a targeted genetic screen for PDZ proteins, we find that kin-4 is required for the long lifespan of daf-2/insulin/IGF-1 receptor mutants. We then show that neurons are crucial tissues for the longevity-promoting role of kin-4. We find that the PDZ domain of KIN-4 binds PTEN, a key factor for the longevity of daf-2 mutants. Moreover, the interaction between KIN-4 and PTEN is essential for the extended lifespan of daf-2 mutants. As many aspects of lifespan regulation in C. elegans are evolutionarily conserved, MAST family kinases may regulate aging and/or age-related diseases in mammals through their interaction with PTEN.11Ysciescopu
- …