6,582 research outputs found

    Selfduality for coupled Potts models on the triangular lattice

    Get PDF
    We present selfdual manifolds for coupled Potts models on the triangular lattice. We exploit two different techniques: duality followed by decimation, and mapping to a related loop model. The latter technique is found to be superior, and it allows to include three-spin couplings. Starting from three coupled models, such couplings are necessary for generating selfdual solutions. A numerical study of the case of two coupled models leads to the identification of novel critical points

    Enset‐based agricultural systems in Ethiopia: A systematic review of production trends, agronomy, processing and the wider food security applications of a neglected banana relative

    Get PDF
    Enset (Ensete ventricosum (Welw.) Cheesman) is the major starch staple of the Ethiopian Highlands, where its unique attributes enhance the food security of approximately 20 million people and have earned it the title “The Tree Against Hunger”. Yet enset‐based agriculture is virtually unknown outside of its narrow zone of cultivation, despite growing wild across much of East and Southern Africa. Here, we review historical production data to show that the area of land under enset production in Ethiopia has reportedly increased 46% in two decades, whilst yield increased 12‐fold over the same period, making enset the second most produced crop species in Ethiopia—though we critically evaluate potential issues with these data. Furthermore, we address a major challenge in the development and wider cultivation of enset, by reviewing and synthesizing the complex and fragmented agronomic and ethnobotanic knowledge associated with this species; including farming systems, processing methods, products, medicinal uses and cultural importance. Finally, we provide a framework to improve the quality, consistency and comparability of data collected across culturally diverse enset‐based agricultural systems to enhanced sustainable use of this neglected starch staple. In conclusion, we discuss the challenges and opportunities for enset cultivation beyond its restricted distribution, and the regional food security potential it could afford smallholders elsewhere in Southern and East Africa

    Effects of deposition dynamics on epitaxial growth

    Full text link
    The dynamic effects, such as the steering and the screening effects during deposition, on an epitaxial growth (Cu/Cu(001)), is studied by kinetic Monte Carlo simulation that incorporates molecular dynamic simulation to rigorously take the interaction of the deposited atom with the substrate atoms into account. We find three characteristic features of the surface morphology developed by grazing angle deposition: (1) enhanced surface roughness, (2) asymmetric mound, and (3) asymmetric slopes of mound sides. Regarding their dependence on both deposition angle and substrate temperature, a reasonable agreement of the simulated results with the previous experimental ones is found. The characteristic growth features by grazing angle deposition are mainly caused by the inhomogeneous deposition flux due to the steering and screening effects, where the steering effects play the major role rather than the screening effects. Newly observed in the present simulation is that the side of mound in each direction is composed of various facets instead of all being in one selected mound angle even if the slope selection is attained, and that the slope selection does not necessarily mean the facet selection.Comment: 9 pages, 10 figure

    A Prismatic Analyser concept for Neutron Spectrometers

    Get PDF
    A development in modern neutron spectroscopy is to avoid the need of large samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can be combined with advanced focusing geometries and with multiplexing instrument designs. We present a combination of simulations and data with 3 energies from one analyser. The data was taken on a prototype installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2 times finer resolution and a factor 1.9 in flux gain compared to a Rowland geometry or 3 times finer resolution and a factor 3.2 in flux gain compared to a single flat analyser slab

    Boundary Correct Real-Time Soft Shadows

    Get PDF

    Towards Linking Virtual Models with Physical Objects in Construction using RFID:Review of Ontologies

    Get PDF
    Virtual models have in recent years proven their worth in practice relating to building design. Today virtual models of the complete project are created before the project is carried out in practice. The immediate advantages of this are great; it introduces fewer errors, gives a better production basis, improved clarity and enhanced communication methods compared to traditional 2D drafting methods. However, there is still much unutilized potential in the virtual models, especially in the construction and operation phases. It is expected that a digital link between the virtual models and the physical objects in the construction process can improve the information and knowledge handling from design to construction, operation and maintenance. The link can be created by use of Radio Frequency Identification (RFID) technology. This paper describes a review and assessment of existing ontologies relevant in relation to creating this link. The ontologies are categorised according to their applicability to specify technical services, resources, organisational relations, business processes and overall frameworks for ontology descriptions and their relations. It is concluded that, with few modifications the technical service and resource ontologies are applicable for industrial use and the meta, organisational and business process ontologies needs further development and industrial maturity to be applicable. KEYWORDS

    Radio Frequency Identification in Construction Operation and Maintenance:Contextual Analysis of User Needs

    Get PDF
    Abstract: As early as in 1995 it was stated that automatic identification of objects using RFID was a promis-ing technology for the construction industry. However, 13 years later the applications of RFID in the con-struction industry are rare and mostly used in prototype projects or used for theft prevention and access control. Recently maintenance applications have been proposed to hold the trigger needed to launch RFID more widely in the construction sector. Therefore the purpose of the research presented in this paper is to identify the actual user needs for automatic identification in construction operation and maintenance. Re-search results from a contextual design process are presented and supplemented with practical experiences from implementing an RFID-supported operation and maintenance system. The greatest obstacles for suc-cessful implementation of RFID-based O&M systems have been found in structuring working processes and information rather than in making the hardware work

    Simulations of energetic beam deposition: from picoseconds to seconds

    Full text link
    We present a new method for simulating crystal growth by energetic beam deposition. The method combines a Kinetic Monte-Carlo simulation for the thermal surface diffusion with a small scale molecular dynamics simulation of every single deposition event. We have implemented the method using the effective medium theory as a model potential for the atomic interactions, and present simulations for Ag/Ag(111) and Pt/Pt(111) for incoming energies up to 35 eV. The method is capable of following the growth of several monolayers at realistic growth rates of 1 monolayer per second, correctly accounting for both energy-induced atomic mobility and thermal surface diffusion. We find that the energy influences island and step densities and can induce layer-by-layer growth. We find an optimal energy for layer-by-layer growth (25 eV for Ag), which correlates with where the net impact-induced downward interlayer transport is at a maximum. A high step density is needed for energy induced layer-by-layer growth, hence the effect dies away at increased temperatures, where thermal surface diffusion reduces the step density. As part of the development of the method, we present molecular dynamics simulations of single atom-surface collisions on flat parts of the surface and near straight steps, we identify microscopic mechanisms by which the energy influences the growth, and we discuss the nature of the energy-induced atomic mobility

    Grafting cyclodextrins to calcium phosphate ceramics for biomedical applications

    Get PDF
    corecore