5,254 research outputs found

    Removal of Radium from Synthetic Shale Gas Brines by Ion Exchange Resin

    Full text link
    Rapid development of hydraulic fracturing for natural gas production from shale reservoirs presents a significant challenge related to the management of the high-salinity wastewaters that return to the surface. In addition to high total dissolved solids (TDS), shale gas-produced brines typically contain elevated concentrations of radium (Ra), which must be treated properly to prevent contamination of surface waters and allow for safe disposal or reuse of produced water. Treatment strategies that isolate radium in the lowest volume waste streams would be desirable to reduce disposal cost and generate useful treatment by-products. The present study evaluates the potential of a commercial strong acid cation exchange resin for removing Ra2+ from high-TDS brines using fixed-bed column reactors. Column reactors were operated with varying brine chemistries and salinities in an effort to find optimal conditions for Ra2+ removal through ion exchange. To overcome competing divalent cations present in the brine for exchange sites, the chelating agent, EDTA, was used to form stable complexes predominantly with the higher concentration Ca2+, Mg2+, and Sr2+ divalent cations, while isolating the much lower concentration Ra2+ species. Results showed that Ra2+ removal by the resin strongly depended on the TDS concentration and could be improved with careful selection of EDTA concentration. This strategy of metal chelation coupled with ion exchange resins may be effective in enhancing Ra2+ removal and reducing the generation and disposal cost if volume reduction of low-level radioactive solid waste can be achieved.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140367/1/ees.2016.0002.pd

    Thermal and dissipative effects in Casimir physics

    Get PDF
    We report on current efforts to detect the thermal and dissipative contributions to the Casimir force. For the thermal component, two experiments are in progress at Dartmouth and at the Institute Laue Langevin in Grenoble. The first experiment will seek to detect the Casimir force at the largest explorable distance using a cylinder-plane geometry which offers various advantages with respect to both sphere-plane and parallel-plane geometries. In the second experiment, the Casimir force in the parallel-plane configuration is measured with a dedicated torsional balance, up to 10 micrometers. Parallelism of large surfaces, critical in this configuration, is maintained through the use of inclinometer technology already implemented at Grenoble for the study of gravitationally bound states of ultracold neutrons, For the dissipative component of the Casimir force, we discuss detection techniques based upon the use of hyperfine spectroscopy of ultracold atoms and Rydberg atoms. Although quite challenging, this triad of experimental efforts, if successful, will give us a better knowledge of the interplay between quantum and thermal fluctuations of the electromagnetic field and of the nature of dissipation induced by the motion of objects in a quantum vacuum.Comment: Contribution to QFEXT'06, appeared in special issue of Journal of Physics

    Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates.

    Get PDF
    UnlabelledInvestigation of the human microbiome has revealed diverse and complex microbial communities at distinct anatomic sites. The microbiome of the human sebaceous follicle provides a tractable model in which to study its dominant bacterial inhabitant, Propionibacterium acnes, which is thought to contribute to the pathogenesis of the human disease acne. To explore the diversity of the bacteriophages that infect P. acnes, 11 P. acnes phages were isolated from the sebaceous follicles of donors with healthy skin or acne and their genomes were sequenced. Comparative genomic analysis of the P. acnes phage population, which spans a 30-year temporal period and a broad geographic range, reveals striking similarity in terms of genome length, percent GC content, nucleotide identity (>85%), and gene content. This was unexpected, given the far-ranging diversity observed in virtually all other phage populations. Although the P. acnes phages display a broad host range against clinical isolates of P. acnes, two bacterial isolates were resistant to many of these phages. Moreover, the patterns of phage resistance correlate closely with the presence of clustered regularly interspaced short palindromic repeat elements in the bacteria that target a specific subset of phages, conferring a system of prokaryotic innate immunity. The limited diversity of the P. acnes bacteriophages, which may relate to the unique evolutionary constraints imposed by the lipid-rich anaerobic environment in which their bacterial hosts reside, points to the potential utility of phage-based antimicrobial therapy for acne.ImportancePropionibacterium acnes is a dominant member of the skin microflora and has also been implicated in the pathogenesis of acne; however, little is known about the bacteriophages that coexist with and infect this bacterium. Here we present the novel genome sequences of 11 P. acnes phages, thereby substantially increasing the amount of available genomic information about this phage population. Surprisingly, we find that, unlike other well-studied bacteriophages, P. acnes phages are highly homogeneous and show a striking lack of genetic diversity, which is perhaps related to their unique and restricted habitat. They also share a broad ability to kill clinical isolates of P. acnes; phage resistance is not prevalent, but when detected, it appears to be conferred by chromosomally encoded immunity elements within the host genome. We believe that these phages display numerous features that would make them ideal candidates for the development of a phage-based therapy for acne

    Feasibility of Metalworking Fluids Delivered in Supercritical Carbon Dioxide (TECHNICAL NOTE SUBMITTED TO JOURNAL OF MANUFACTURING PROCESSES)

    Get PDF
    Abstract This paper presents a new method to lubricate, cool, and evacuate chips in metalworking operations using supercritical carbon dioxide (scCO

    Anaerobic microbial community response to methanogenic inhibitors 2‐bromoethanesulfonate and propynoic acid

    Full text link
    Methanogenic inhibitors are often used to study methanogenesis in complex microbial communities or inhibit methanogens in the gastrointestinal tract of livestock. However, the resulting structural and functional changes in archaeal and bacterial communities are poorly understood. We characterized microbial community structure and activity in mesocosms seeded with cow dung and municipal wastewater treatment plant anaerobic digester sludge after exposure to two methanogenic inhibitors, 2‐bromoethanesulfonate (BES) and propynoic acid (PA). Methane production was reduced by 89% (0.5 mmol/L BES), 100% (10 mmol/LBES), 24% (0.1 mmol/LPA), and 95% (10 mmol/LPA). Using modified primers targeting the methyl‐coenzyme M reductase (mcrA) gene, changes in mcrA gene expression were found to correspond with changes in methane production and the relative activity of methanogens. Methanogenic activity was determined by the relative abundance of methanogen 16S rRNA cDNA as a percentage of the total community 16S rRNA cDNA. Overall, methanogenic activity was lower when mesocosms were exposed to higher concentrations of both inhibitors, and aceticlastic methanogens were inhibited to a greater extent than hydrogenotrophic methanogens. Syntrophic bacterial activity, measured by 16S rRNA cDNA, was also reduced following exposure to both inhibitors, but the overall structure of the active bacterial community was not significantly affected.This manuscript reports a comprehensive approach to characterizing the effects of commonly used methanogenesis inhibitors on an anaerobic microbial community. We use mock and environmental communities and target two genes using DNA‐ and RNA‐based methods. Results from Illumina sequencing of the 16S rRNA gene, 16S rRNA cDNA, mcrA gene, and mcrA transcript cDNA highlight shifts in both methanogenic archaeal activity and syntrophic bacterial activity.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134127/1/mbo3349.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134127/2/mbo3349_am.pd

    Effects of Organic Base Chemistry on Interfacial Tension, Wettability, and Capillary Pressure in Multiphase Subsurface Waste Systems

    Full text link
    The presence of surfactants may have profound effects on the transport of organic contaminants in multiphase systems. It is a common practice, however, to model the subsurface migration of liquids independently of the aqueous phase composition. As such, transport in these systems may not be adequately characterized. This study investigates the impact of pH on interfacial tension, wettability, and the drainage capillary pressure–saturation relationship in air–water–quartz and o‐xylene–water–quartz systems containing dodecylamine, an organic base. In these systems, three mechanisms, speciation, partitioning, and sorption, are important in determining the interfacial tension and contact angle, and consequently, important in determining the capillary pressure. By adjusting the pH above and below, the pK a of the base, the relative importance of these mechanisms was altered. Below dodecylamine's pK a of 10.6, the base was primarily in a cationic form resulting in minimal partitioning into the nonaqueous liquid and greater sorption at the quartz surface. Above the pK a , the base was primarily in a neutral form which did not sorb to the quartz, and, furthermore, partitioned into the organic liquid phase where its surface activity was minimized. The combination of these processes caused the capillary pressure to change in a manner consistent with pore‐scale theory of capillarity. The utility in this approach lies in the possibility of predicting transport properties in multiphase systems while incorporating the direct effects of solution chemistry.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43850/1/11242_2004_Article_239175.pd

    Rapid mobilization of noncrystalline U(IV) coupled with FeS oxidation

    Get PDF
    The reactivity of disordered, noncrystalline U(IV) species remains poorly characterized despite their prevalence in biostimulated sediments. Because of the lack of crystalline structure, noncrystalline U(IV) may be susceptible to oxidative mobilization under oxic conditions. The present study investigated the mechanism and rate of oxidation of biogenic noncrystalline U(IV) by dissolved oxygen (DO) in the presence of mackinawite (FeS). Previously recognized as an effective reductant and oxygen scavenger, nanoparticulate FeS was evaluated for its role in influencing U release in a flow through system as a function of pH and carbonate concentration. The results demonstrated that noncrystalline U(IV) was more susceptible to oxidation than uraninite (UO2) in the presence of dissolved carbonate. A rapid release of U occurred immediately after FeS addition without exhibiting a temporary inhibition stage, as was observed during the oxidation of UO2, although FeS still kept DO levels low. X-ray photoelectron spectroscopy (XPS) characterized a transient surface Fe(III) species during the initial FeS oxidation, which was likely responsible for oxidizing noncrystalline U(IV) in addition to oxygen. In the absence of carbonate, however, the release of dissolved U was significantly hindered as a result of U adsorption by FeS oxidation products. This study illustrates the strong interactions between iron sulfide and U(IV) species during redox transformation and implies the lability of biogenic noncrystalline U(IV) species in the subsurface environment when subjected to redox cycling events

    Surface complexation models: An evaluation of model parameter estimation using FITEQL and oxide mineral titration data

    Full text link
    The ability of surface complexation models (SCMs) to fit sets of titration data as a function of changes in model parameters was evaluated using FITEQL and acid-base titration data of [alpha]-FeOOH, [alpha]-Al2O3, and TiO2. Three SCMs were evaluated: the triple-layer model (TLM), the constant capacitance model (CCM), and the diffuse-layer model (DLM). For all models evaluated, increasing the model input value for the total number of surface sites caused a decrease in the best-fit Log K values of the surface protolysis constants. In the case of the CCM, the best-fit surface protolysis constants were relatively insensitive to changes in the value of the capacitance fitting parameter, C1, particularly for values of C1 greater than 1.2 F/m2. Similarly, the best-fit values of TLM surface electrolyte binding constants were less influenced by changes in the value of C1 when C1 was greater than 1.2 F/m2. For a given C1 value, the best-fit TLM values of the electrolyte binding constants were sensitive to changes in [Delta]pKa up to [Delta]pKa values of 3. For [Delta]pKa values above 3, no changes in the best-fit electrolyte binding constants were observed. Effects of the quality and extent of titration data on the best-fit values for surface constants are discussed for each model. A method is suggested for choosing a unique set of parameter values for each of the models.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29417/1/0000493.pd

    Grain size and organic carbon controls polyaromatic hydrocarbons (PAH), mercury (Hg) and toxicity of surface sediments in the River Conwy Estuary, Wales, UK

    Get PDF
    The Conwy estuary was evaluated for sediment quality. Microtox bioassay revealed 38 of 39 sites were non-toxic. Hg ranged from 0.001 to 0.153 μg kg−1, mean 0.026 mg kg−1, Σ16 PAH from 18 to 1578 μg kg−1, mean 269 μg kg−1, Σ22 PAH, 18 to 1871 μg kg−1 mean to 312 μg kg−1, two sites had high perylene relative to ΣPAH. Σ22PAH correlated positively with TOC, clay and silt (R2 0.89, 0.92, 0.90) and negatively with sand. Multivariate statistics, delineated four spatial (site) and five variable (measurements) clusters. Spatial clustering relates to sediment grain size, in response to hydrodynamic processes in estuary; fine (clay to silt) sized sediments exhibit the highest Hg and PAH content, because these components partitioned into the fine fraction. Comparison to national and international environmental standards suggests Hg and PAH content of Conwy sediments are unlikely to harm ecology or transfer up into the human food chain

    Stars on the edge: Galactic tides and the outskirts of the Sculptor dwarf spheroidal

    Full text link
    Stars far beyond the half-light radius of a galaxy suggest the existence of a mechanism able to move stars out of the region where most star formation has taken place. The formation of these "stellar halos" are usually ascribed to the effects of early mergers or Galactic tides, although fluctuations in the gravitational potential due to stellar feedback is also a possible candidate mechanism. A Bayesian algorithm is used to find new candidate members in the extreme outskirts of the Sculptor dwarf galaxy. Precise metallicities and radial velocities for two distant stars are measured from their spectra taken with the Gemini South GMOS spectrograph. The radial velocity, proper motion and metallicity of these targets are consistent with Sculptor membership. As a result, the known boundary of the Sculptor dwarf extends now out to an elliptical distance of 10\sim10 half-light radii, which corresponds to a projected physical distance of 3\sim3 kpc. As reported in earlier work, the overall distribution of radial velocities and metallicities indicate the presence of a more spatially and kinematically dispersed metal-poor population that surrounds the more concentrated and colder metal-rich stars. Sculptor's density profile shows a "kink" in its logarithmic slope at a projected distance of 25\sim25 arcmin (620 pc), which we interpret as evidence that Galactic tides have helped to populate the distant outskirts of the dwarf. We discuss further ways to test and validate this tidal interpretation for the origin of these distant stars.Comment: 10 pages, 4 figures, submitted to MNRA
    corecore