12 research outputs found

    Guidelines for Tailored Chemical Functionalization of Graphene

    Get PDF
    Graphene oxide (GO) has been synthesized by the Hummers method with modification of experimental condition by different research groups, but there is no guideline to prepare tailored GO for targeted applications. In this research, we suggest a guideline for tailor-fittable functionalization of graphene on the basis of the scope of our previous report on the two-step oxidation of GO. We describe a detailed procedure for synthesis of GO, effects of degree of step I oxidation on characteristics of GO and comparing them with effects of degree of step II oxidation. Characteristic changes of GO occurring during step I oxidation and those occurring during step II oxidation are different in species of oxygen functional groups, interlayer spacing, thermal stability, size distribution, and yield of GO. On the basis of the results, three types of tailor-fitted GO for a fiber, transparent conducting film, and hydrogen storage material are synthesized by controlling the degree of step I and step II oxidation. Compared to the reference GO synthesized by conventional modified Hummers method, the tailor-fitted GO showed 33.5%, 117%, and 104% enhanced performance in strength of the fiber, figure of merits of transparent conducting film, and hydrogen storage, respectively. Our results show that the performance of GO based application is significantly influenced by the synthesis condition of GO, and optimized performance of the applications can be obtained by the tailor-fitted functionalization of GO. We anticipate that this study would be helpful for a variety of researches, both synthesis and application of GO

    Preparation and Exceptional Mechanical Properties of Bone-Mimicking Size-Tuned Graphene Oxide@Carbon Nanotube Hybrid Paper

    No full text
    The self-assembled nanostructures of carbon nanomaterials possess a damage-tolerable architecture crucial for the inherent mechanical properties at both micro- and macroscopic levels. Bone, or “natural composite,” has been known to have superior energy dissipation and fracture resistance abilities due to its unique load-bearing hybrid structure. However, few approaches have emulated the desirable structure using carbon nanomaterials. In this paper, we present an approach in fabricating a hybrid composite paper based on graphene oxide (GO) and carbon nanotube (CNT) that mimicks the natural bone structure. The size-tuning strategy enables smaller GO sheets to have more cross-linking reactions with CNTs and be homogeneously incorporated into CNT-assembled paper, which is advantageous for effective stress transfer. The resultant hybrid composite film has enhanced mechanical strength, modulus, toughness, and even electrical conductivity compared to previously reported CNT-GO based composites. We further demonstrate the usefulness of the size-tuned GOs as the “stress transfer medium” by performing in situ Raman spectroscopy during the tensile test

    MOF-Derived Hierarchically Porous Carbon with Exceptional Porosity and Hydrogen Storage Capacity

    No full text
    Highly porous carbon has played an important role in tackling down the energy and environmental problems due to their attractive features such as high specific surface area (SSA), stability, and mass productivity. Especially, the desirable characteristics of the highly porous carbon such as lightweight, fast adsorption/desorption kinetics, and high SSA have attracted extensive attention in the “hydrogen storage” application which is a main bottleneck for the realization of on-board hydrogen fuel cell vehicles. We herein presented porous carbon with hierarchical pore structure derived from highly crystalline metal organic frameworks (denoted as MOF-derived carbon: MDC) without any carbon source and showed it as a promising hydrogen storage adsorbent. MDCs can be fabricated by a simple heat adjustment of MOFs without complicated process and environmental burden. The MDC displayed hierarchical pore structures with high ultramicroporosity, high SSA, and very high total pore volume. Due to its exceptional porosity, MDCs exhibited reversible H<sub>2</sub> storage capacities at certain conditions that were better than those of previously reported porous carbons and MOFs

    Highly Reproducible Thermocontrolled Electrospun Fiber Based Organic Photovoltaic Devices

    No full text
    In this work, we examined the reasons underlying the humidity-induced morphological changes of electrospun fibers and suggest a method of controlling the electrospun fiber morphology under high humidity conditions. We fabricated OPV devices composed of electrospun fibers, and the performance of the OPV devices depends significantly on the fiber morphology. The evaporation rate of a solvent at various relative humidity was measured to investigate the effects of the relative humidity during electrospinning process. The beaded nanofiber morphology of electrospun fibers was originated due to slow solvent evaporation rate under high humidity conditions. To increase the evaporation rate under high humidity conditions, warm air was applied to the electrospinning system. The beads that would have formed on the electrospun fibers were completely avoided, and the power conversion efficiencies of OPV devices fabricated under high humidity conditions could be restored. These results highlight the simplicity and effectiveness of the proposed method for improving the reproducibility of electrospun nanofibers and performances of devices consisting of the electrospun nanofibers, regardless of the relative humidity

    Easy Preparation of Self-Assembled High-Density Buckypaper with Enhanced Mechanical Properties

    No full text
    A controlled assembly and alignment of carbon nanotubes (CNTs) in a high-packing density with a scalable way remains challenging. This paper focuses on the preparation of self-assembled and well-aligned CNTs with a densely packed nanostructure in the form of buckypaper via a simple filtration method. The CNT suspension concentration is strongly reflected in the alignment and assembly behavior of CNT buckypaper. We further demonstrated that the horizontally aligned CNT domain gradually increases in size when increasing the deposited CNT quantity. The resultant aligned buckypaper exhibited notably enhanced packing density, strength, modulus, and hardness compared to previously reported buckypapers

    Crucial Role of Oxidation Debris of Carbon Nanotubes in Subsequent End-Use Applications of Carbon Nanotubes

    No full text
    A facile purification method for oxidized carbon nanotubes (CNTs) is developed to preserve acidic carbon compounds (ACCs) for achieving high-quality dispersion of CNTs. The remaining ACCs, which originated from the surface destruction of CNTs during the oxidation process, are considered to play a crucial role in the dispersion of CNTs in water and various polar protic solvents. To elucidate the concrete role of ACCs, a direct titration method is applied to quantitatively investigate the degree of ionization of both CNTs and ACCs in their aqueous dispersions. While ACCs with strong carboxylic groups (p<i>K</i><sub>a</sub> of around 2.9) are easily removed by the neutral or base washing of oxidized CNTs, which is common in the purification process, ACC-selective purification using acid washing preserves the ACCs attached to CNTs, thereby effectively stabilizing CNT dispersions in aqueous solutions. Additionally, the Hansen solubility parameters of ACC-preserved and ACC-removed CNTs were determined by the inverse gas chromatography method to estimate their miscibility in various solvents. The preserved ACCs significantly influenced the dispersibility of CNTs in polar protic solvents, which may widen the possible application of CNTs. Specifically, the ACC-preserved high-quality CNT dispersion produces high-performance CNT buckypaper with densely packed nanostructures. The Young’s modulus and tensile strength of these buckypapers reach up to 12.0 and 91.0 MPa, respectively, which exceed those of ACC-removed CNTs in previous reports

    Hidden Second Oxidation Step of Hummers Method

    No full text
    Hummers method has been used for 50 years to prepare graphene oxide (GO) by oxidizing graphite using Mn<sub>2</sub>O<sub>7</sub>. In this work, a new angle on Hummers method is described. The oxidation procedure before the addition of water, which has been respected as the main oxidation step of Hummers method, is named <i>step I oxidation</i>, and the widely ignored further oxidation step after the addition of water is named <i>step II oxidation</i>. The chemical and structural evolutions during step II oxidation was demonstrated for the first time using various techniques including atomic force microscopy (AFM), dynamic light scattering (DLS), X-ray photoelectron spectroscopy (XPS), ultraviolet–visible light (UV–vis) spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), <sup>13</sup>C nuclear magnetic resonance (NMR), and zeta-potentiometry. Step II oxidation influences the size of GO, defects within the layers, and functional groups on the surface, which affect the thermal stability of GO and the properties of resultant thermally reduced GO. This work provides new chemical insights into GO and guidelines for preparation of tailor-fitted GO

    Carbon science in 2016: Status, challenges and perspectives

    No full text
    cited By 66International audienceSeveral researchers share their perspective on the status and challenges faced by the carbon science in 2016. In addition to chemical vapor deposition (CVD) and hydrosolvo/thermal processes, alternative innovative growth techniques of these hypothetical 3D solids should now be a focus for carbon researchers. Recently, it has been demonstrated that graphene nanoribbons with specific diameters and nanotubes with desired helicity could be synthesized by careful polymerization of aromatic molecules. New theoretical studies using the nanotube/catalyst interface thermodynamics and the kinetic growth theories have widened the understanding of chirality selectivity towards near-armchair tubes. In 2013, a novel method based on aqueous-two polymer phase separation has emerged as an easily accessible and versatile approach for sorting nanotubes which is promising for low-cost scalable production of high-purity SWCNTs. Gel chromatograph based separation methods have also yielded high-purity single chirality optical isomers. New carbon materials are key components in alternative energy technologies that include electrodes for batteries, supercapacitors, fuel cells, and electrolytic cells for hydrogen production from water. They are also of interest as transparent conductors in solar cells, bipolar plates in fuel cells, lightweight materials that save energy in aircraft and automotive operations, and catalysts or catalyst supports for energy transformations that include carbon dioxide reduction into fuels and commercial chemicals
    corecore