3,952 research outputs found

    The impact of Arctic sea ice loss on mid-Holocene climate.

    Get PDF
    Mid-Holocene climate was characterized by strong summer solar heating that decreased Arctic sea ice cover. Motivated by recent studies identifying Arctic sea ice loss as a key driver of future climate change, we separate the influences of Arctic sea ice loss on mid-Holocene climate. By performing idealized climate model perturbation experiments, we show that Arctic sea ice loss causes zonally asymmetric surface temperature responses especially in winter: sea ice loss warms North America and the North Pacific, which would otherwise be much colder due to weaker winter insolation. In contrast, over East Asia, sea ice loss slightly decreases the temperature in early winter. These temperature responses are associated with the weakening of mid-high latitude westerlies and polar stratospheric warming. Sea ice loss also weakens the Atlantic meridional overturning circulation, although this weakening signal diminishes after 150-200 years of model integration. These results suggest that mid-Holocene climate changes should be interpreted in terms of both Arctic sea ice cover and insolation forcing

    Quantification of The Performance of CMIP6 Models for Dynamic Downscaling in The North Pacific and Northwest Pacific Oceans

    Get PDF
    Selecting a reliable global climate model as the driving forcing in simulations with dynamic downscaling is critical for obtaining a reliable regional ocean climate. With respect to their accuracy in providing physical quantities and long-term trends, we quantify the performances of 17 models from the Coupled Model Inter-comparison Project Phase 6 (CMIP6) over the North Pacific (NP) and Northwest Pacific (NWP) oceans for 1979–2014. Based on normalized evaluation measures, each model’s performance for a physical quantity is mainly quantified by the performance score (PS), which ranges from 0 to 100. Overall, the CMIP6 models reasonably reproduce the physical quantities of the driving variables and the warming ocean heat content and temperature trends. However, their performances significantly depend on the variables and region analyzed. The EC-Earth-Veg and CNRM-CM6-1 models show the best performances for the NP and NWP oceans, respectively, with the highest PS values of 85.89 and 76.97, respectively. The EC-Earth3 model series are less sensitive to the driving variables in the NP ocean, as reflected in their PS. The model performance is significantly dependent on the driving variables in the NWP ocean. Nevertheless, providing a better physical quantity does not correlate with a better performance for trend. However, MRI-ESM2-0 model shows a high performance for the physical quantity in the NWP ocean with warming trends similar to references, and it could thus be used as an appropriate driving forcing in dynamic downscaling of this ocean. This study provides objective information for studies involving dynamic downscaling of the NP and NWP oceans

    Intraspinal Lymphangioma Mimicking Lumbar Disc Herniation

    Get PDF
    Intraspinal soft tissue lymphangioma is extremely rare and very few cases of intraspinal lymphangioma have been reported. To our knowledge, most reported intraspinal lymphangioma cases manifested only pain or minor neurologic sign. We report here one case of intraspinal lymphangioma which caused profound foot drop. Total removal could be achieved by two microscopic surgeries because of initial misdiagnosis as an organized herniated disc fragment. Six months later, the weakness of her right ankle and big toe was improved to grade 3. There was no evidence of clinical recurrence or aggravation at the final followup visit. If there is an impression suggesting tumorous lesion as in our case, more aggressive evaluation and treatment policy is required to avoid unnecessary further surgery

    Inhibition of poly(ADP-ribose)polymerase binding to DNA by thymidine dimer

    Get PDF
    AbstractThe ability of poly(ADP-ribose)polymerase to bind damaged DNA was assessed by electrophoretic mobility shift assay. DNA binding domain of poly(ADP-ribose)polymerase (PARPDBD) binds to synthetic deoxyribonucleotide duplex 10-mer. However, the synthetic deoxyribonucleotide duplex containing cys-syn thymidine dimer which produces the unwinding of DNA helix structure lost its affinity to PARPDBD. It was shown that the binding of PARPDBD to the synthetic deoxyribonucleotide duplex was not affected by O6-Me-dG which causes only minor distortion of DNA helix structure. This study suggests that the stabilized DNA helix structure is important for poly(ADP-ribose)polymerase binding to DNA breaks, which are known to stimulate catalytic activity of poly(ADP-ribose)polymerase

    Enhanced magnetic and thermoelectric properties in epitaxial polycrystalline SrRuO3 thin film

    Full text link
    Transition metal oxide thin films show versatile electrical, magnetic, and thermal properties which can be tailored by deliberately introducing macroscopic grain boundaries via polycrystalline solids. In this study, we focus on the modification of the magnetic and thermal transport properties by fabricating single- and polycrystalline epitaxial SrRuO3 thin films using pulsed laser epitaxy. Using epitaxial stabilization technique with atomically flat polycrystalline SrTiO3 substrate, epitaxial polycrystalline SrRuO3 thin film with crystalline quality of each grain comparable to that of single-crystalline counterpart is realized. In particular, alleviated compressive strain near the grain boundaries due to coalescence is evidenced structurally, which induced enhancement of ferromagnetic ordering of the polycrystalline epitaxial thin film. The structural variations associated with the grain boundaries further reduce the thermal conductivity without deteriorating the electronic transport, and lead to enhanced thermoelectric efficiency in the epitaxial polycrystalline thin films, compared with their single-crystalline counterpart.Comment: 24 pages, 5 figure
    • …
    corecore