2,102 research outputs found

    Model Independent Analysis of the Forward-Backward Asymmetry for the BK1μ+μB\to K_{1}\mu^{+}\mu^{-} Decay

    Full text link
    The sensitivity of the zero position of the forward backward asymmetry AFB\mathcal{A}_{FB} for the exclusive BK1(1270)μ+μB\rightarrow K_{1}(1270)\mu^{+}\mu^{-} decay is examined by using most general non-standard 4-fermion interactions. Our analysis shows that the zero position of the forward backward asymmetry is very sensitive to the sign and size of the Wilson coefficients corresponding to the new vector type interactions, which are the counter partners of the usual Standard Model operators but have opposite chirality. In addition to these, the other significant effect comes from the interference of Scalar-Pseudoscalar and Tensor type operators. These results will not only enhance our theoretical understanding about the axial vector mesons but will also serve as a good tool to look for physics beyond the SM.Comment: 14 pages, 8 figures, Published version that appears in EPJ

    Reflection and Ducting of Gravity Waves Inside the Sun

    Get PDF
    Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward-traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward- and downward-traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an alpha-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.Comment: 23 pages, 5 figures. Accepted for publication in Solar Physic

    Amplitude to phase conversion of InGaAs pin photo-diodes for femtosecond lasers microwave signal generation

    Full text link
    When a photo-diode is illuminated by a pulse train from a femtosecond laser, it generates microwaves components at the harmonics of the repetition rate within its bandwidth. The phase of these components (relative to the optical pulse train) is known to be dependent on the optical energy per pulse. We present an experimental study of this dependence in InGaAs pin photo-diodes illuminated with ultra-short pulses generated by an Erbium-doped fiber based femtosecond laser. The energy to phase dependence is measured over a large range of impinging pulse energies near and above saturation for two typical detectors, commonly used in optical frequency metrology with femtosecond laser based optical frequency combs. When scanning the optical pulse energy, the coefficient which relates phase variations to energy variations is found to alternate between positive and negative values, with many (for high harmonics of the repetition rate) vanishing points. By operating the system near one of these vanishing points, the typical amplitude noise level of commercial-core fiber-based femtosecond lasers is sufficiently low to generate state-of-the-art ultra-low phase noise microwave signals, virtually immune to amplitude to phase conversion related noise.Comment: 7 pages, 6 figures, submitted to Applied Physics

    Charge-density wave formation in Sr_{14}Cu_{24}O_{41}

    Full text link
    The electrodynamic response of the spin-ladder compound Sr14x_{14-x}Cax_xCu24_{24}O41_{41} (x=0,3,9x=0, 3, 9) has been studied from radiofrequencies up to the infrared. At temperatures below 250 K a pronounced absorption peak appears around 12 cm1^{-1} in Sr14_{14}Cu24_{24}O41_{41} for the radiation polarized along the chains/ladders (Ec{\bf E}\parallel {\bf c}). In addition a strongly temperature dependent dielectric relaxation is observed in the kHz - MHz range. We explain this behavior by a charge density wave which develops in the ladders sub-system and produces a mode pinned at 12 cm1^{-1}. With increasing Ca doping the mode shifts up in frequency and eventually disappears for x=9x=9 because the dimensionality of the system crosses over from one to two dimensions, giving way to the superconducting ground state under pressure.Comment: One name added to author list 4 pages, 2 figures, email: [email protected]

    Scanning Fourier Spectroscopy: A microwave analog study to image transmission paths in quantum dots

    Full text link
    We use a microwave cavity to investigate the influence of a movable absorbing center on the wave function of an open quantum dot. Our study shows that the absorber acts as a position-selective probe, which may be used to suppress those wave function states that exhibit an enhancement of their probability density near the region where the impurity is located. For an experimental probe of this wave function selection, we develop a technique that we refer to as scanning Fourier spectroscopy, which allows us to identify, and map out, the structure of the classical trajectories that are important for transmission through the cavity.Comment: 4 pages, 5 figure

    Light-cone QCD Sum Rules for the Λ\Lambda Baryon Electromagnetic Form Factors and its magnetic moment

    Full text link
    We present the light-cone QCD sum rules up to twist 6 for the electromagnetic form factors of the Λ\Lambda baryon. To estimate the magnetic moment of the baryon, the magnetic form factor is fitted by the dipole formula. The numerical value of our estimation is μΛ=(0.64±0.04)μN\mu_\Lambda=-(0.64\pm0.04)\mu_N, which is in accordance with the experimental data and the existing theoretical results. We find that it is twist 4 but not the leading twist distribution amplitudes that dominate the results.Comment: 13 page, 7 figures, accepted for publication in Euro. Phys. J.

    Model independent analysis of 'Lambda' baryon polarizations in (Lambda_b -> Lambda l^+ l^-) decay

    Full text link
    We present the model independent analysis of Λ\Lambda baryon polarizations in the (Lambda_b -> Lambda l^+ l^-) decay. The sensitivity of the averaged 'Lambda' polarizations to the new Wilson coefficients is studied. It is observed that there exist certain regions of the new Wilson coefficients where the branching ratio coincides with the standard model prediction, while the 'Lambda' baryon polarizations deviate from the standard model results remarkably.Comment: 19 pages, 9 figures, LaTeX formatte

    Optical and transport properties in doped two-leg ladder antiferromagnet

    Get PDF
    Within the t-J model, the optical and transport properties of the doped two-leg ladder antiferromagnet are studied based on the fermion-spin theory. It is shown that the optical and transport properties of the doped two-leg ladder antiferromagnet are mainly governed by the holon scattering. The low energy peak in the optical conductivity is located at a finite energy, while the resistivity exhibits a crossover from the high temperature metallic-like behavior to the low temperature insulating-like behavior, which are consistent with the experiments.Comment: 13 pages, 5 figures, accepted for publication in Phys. Rev. B65 (2002) (April 15 issue

    Molecular correlates of response to capmatinib in advanced non-small-cell lung cancer: clinical and biomarker results from a phase I trial

    Get PDF
    Background: Dysregulation of receptor tyrosine kinase MET by various mechanisms occurs in 3%–4% of non-small-cell lung cancer (NSCLC) and is associated with unfavorable prognosis. While MET is a validated drug target in lung cancer, the best biomarker strategy for the enrichment of a susceptible patient population still remains to be defined. Towards this end we analyze here primary data from a phase I dose expansion study of the MET inhibitor capmatinib in patients with advanced MET-dysregulated NSCLC. Patients and methods: Eligible patients [≥18 years; Eastern Cooperative Oncology Group (ECOG) performance status ≤2] with MET-dysregulated advanced NSCLC, defined as either (i) MET status by immunohistochemistry (MET IHC) 2+ or 3+ or H-score ≥150, or MET/centromere ratio ≥2.0 or gene copy number (GCN) ≥5, or (ii) epidermal growth factor receptor wild-type (EGFRwt) and centrally assessed MET IHC 3+, received capmatinib at the recommended dose of 400 mg (tablets) or 600 mg (capsules) b.i.d. The primary objective was to determine safety and tolerability; the key secondary objective was to explore antitumor activity. The exploratory end point was the correlation of clinical activity with different biomarker formats. Results: Of 55 patients with advanced MET-dysregulated NSCLC, 40/55 (73%) had received two or more prior systemic therapies. All patients discontinued treatment, primarily due to disease progression (69.1%). The median treatment dur

    Phase diagrams of spin ladders with ferromagnetic legs

    Full text link
    The low-temperature properties of the spin S=1/2 ladder with anisotropic ferromagnetic legs are studied using the continuum limit bosonization approach. The weak-coupling ground state phase diagram of the model is obtained for a wide range of coupling constants and several unconventional gapless ''spin-liquid'' phases are shown to exist for ferromagnetic coupling. The behavior of the ladder system in the vicinity of the ferromagnetic instability point is discussed in detail.Comment: 11 pages, 4 figure
    corecore