8 research outputs found

    Identifying the science and technology dimensions of emerging public policy issues through horizon scanning

    Get PDF
    Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security.Public policy requires public support, which in turn implies a need to enable the public not just to understand policy but also to be engaged in its development. Where complex science and technology issues are involved in policy making, this takes time, so it is important to identify emerging issues of this type and prepare engagement plans. In our horizon scanning exercise, we used a modified Delphi technique [1]. A wide group of people with interests in the science and policy interface (drawn from policy makers, policy adviser, practitioners, the private sector and academics) elicited a long list of emergent policy issues in which science and technology would feature strongly and which would also necessitate public engagement as policies are developed. This was then refined to a short list of top priorities for policy makers. Thirty issues were identified within broad areas of business and technology; energy and environment; government, politics and education; health, healthcare, population and aging; information, communication, infrastructure and transport; and public safety and national security

    Systematic review of the survival rate and incidence of biologic, technical, and esthetic complications of single implant abutments supporting fixed prostheses

    No full text
    Purpose: To assess the 5-year survival rate and number of technical, biologic, and esthetic complications involving implant abutments. Materials and Methods: Electronic (Medline) and hand searches were performed to assess studies on metal and ceramic implant abutments. Relevant data from a previous review were included. Two reviewers independently extracted the data. Failure and complication rates were analyzed, and estimates of 5-year survival proportions were calculated from the relationship between event rate and survival function. Multivariable robust Poisson regression was used to compare abutment characteristics. Results: The search yielded 1,558 titles and 274 abstracts. Twenty-four studies were selected for data analysis. The survival rate for ceramic abutments was 97.5% (95% confidence interval [CI]): 89.6% to 99.4%) and 97.6% (95% CI: 96.2% to 98.5%) for metal abutments. The overall 5-year rate for technical complications was 11.8% (95% CI: 8.5% to 16.3%), 8.9% (95% CI: 4.3% to 17.7%) for ceramic and 12.0% (95% CI: 8.5% to 16.8%) for metal abutments. Biologic complications occurred with an overall rate of 6.4% (95% CI: 3.3% to 12.0%), 10.4% (95% CI: 1.9% to 46.7%) for ceramic, and 6.1% (95% CI: 3.1% to 12.0%) for metal abutments. Conclusions: The present meta-analysis on single-implant prostheses presents high survival rates of single implants, abutments, and prostheses after 5 years of function. No differences were found for the survival and failure rates of ceramic and metal abutments. No significant differences were found for technical, biologic, and esthetic complications of internally and externally connected abutments

    Submucosal zirconia implant prosthesis fabricated with CAD/CAM

    No full text

    Radiographic Evaluation of Marginal Bone Level Around Implants with Different Neck Designs After 1 Year

    No full text
    Purpose: To evaluate the influence of macro- and microstructure of the implant surface at the marginal bone level after functional loading. Materials and Methods: Sixty-eight patients were randomly assigned to 1 of 3 groups. The first group received 35 implants with a machined neck (Ankylos); the second group, 34 implants with a rough-surfaced neck (Stage 1); and the third, 38 implants with a rough-surfaced neck with microthreads (One plant). Clinical and radiographic examinations were conducted at baseline (implant loading) and 3, 6, and 12 months postloading. Two-way repeated analysis of variance (ANOVA) was used to test the significance of marginal bone change of each tested group at baseline, 3, 6, and 12 month follow-ups and 1-way ANOVA was also used to compare the bone loss of each time interval within the same implant group (P < .05). Results: At 12 months, significant differences were noted in the amount of alveolar bone loss recorded for the 3 groups (P < .05). The group with the rough-surfaced microthreaded neck had a mean crestal bone loss of 0.18 ± 0.16 mm; the group with the rough-surfaced neck, 0.76 ± 0.21 mm; and the group with the machined neck, 1.32 ± 0.27 mm. In the rough-surfaced group and the rough-surfaced microthreaded group, no statistically significant changes were observed after 3 months, whereas the machined-surface group showed significant bone loss for every interval (P < .05). Discussion: To minimize marginal bone loss, in addition to the use of a rough surface at the marginal bone level, a macroscopic modification such as the addition of microthreads could be recommended. A rough surface and microthreads at the implant neck not only reduce crestal bone loss but also help with early biomechanical adaptation against loading in comparison to the machined neck design. Conclusion: A rough surface with microthreads at the implant neck was the most effective design to maintain the marginal bone level against functional loading
    corecore